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ABSTRACT
A statistical test can be seen as a procedure to produce a decision based on observed data, where some
decisions consist of rejecting a hypothesis (yielding a significant result) and some do not, and where one
controls the probability to make a wrong rejection at some prespecified significance level. Whereas tradi-
tional hypothesis testing involves only two possible decisions (to reject or not a null hypothesis), Kaiser’s
directional two-sided test as well as the more recently introduced testing procedure of Jones and Tukey,
each equivalent to running two one-sided tests, involve three possible decisions to infer the value of a
unidimensional parameter. The latter procedure assumes that a point null hypothesis is impossible (e.g.,
that two treatments cannot have exactly the same effect), allowing a gain of statistical power. There are,
however, situations where a point hypothesis is indeed plausible, for example, when considering hypothe-
ses derived from Einstein’s theories. In this article, we introduce a five-decision rule testing procedure,
equivalent to running a traditional two-sided test in addition to two one-sided tests, which combines the
advantages of the testing procedures of Kaiser (no assumption on a point hypothesis being impossible)
and Jones and Tukey (higher power), allowing for a nonnegligible (typically 20%) reduction of the sam-
ple size needed to reach a given statistical power to get a significant result, compared to the traditional
approach.

1. Introduction

A statistical test can be seen as a procedure to produce a deci-
sion based on observed data (Kaiser 1960). For example, tra-
ditional one-sided and two-sided tests to make inference on a
unidimensional parameter are testing procedures with two pos-
sible decisions (to reject or not a null hypothesis). On the other
hand, Kaiser (1960) and Jones andTukey (2000) introduced test-
ing procedures with three possible decisions. In this article, we
propose a testing procedure with five possible decisions. In all
these testing procedures, some decisions consist of rejecting a
hypothesis, yielding a “significant result,” and some do not. In
what follows, a testing procedure is said to be valid if it con-
trols the probability to make a wrong rejection, that is, to reject
a hypothesis which is true, the “significance level” α of a testing
procedure being defined as the maximal probability to make a
wrong rejection, typically set at 0.05.

In what follows, we shall consider some unidimensional
parameter θ and some reference value of interest θ0. In a one-
sided test to the left, one attempts to reject θ ≥ θ0. In a one-sided
test to the right, one attempts to reject θ ≤ θ0. In a traditional
two-sided test, one attempts to reject θ = θ0, with no informa-
tion whether θ ≥ θ0 or θ ≤ θ0 is rejected in case of a significant
result. As noted by Kaiser (1960), “it seems difficult to imag-
ine a problem for which this traditional test could give results
of interest” and “to find a ‘significant’ effect and not be able to
decide in which direction this difference or effect lies, seems a
sterile way to do business”. This is why he proposed instead a
“directional two-sided test,” which is equivalent to performing

CONTACT Valentin Rousson valentin.rousson@chuv.ch Division of Biostatistics, Institute for Social and Preventive Medicine, Lausanne University Hospital, Route
de la Corniche , Lausanne , Switzerland.

two one-sided tests, one to the left and one to the right, where
one has the possibility to reject either θ ≥ θ0 or θ ≤ θ0, depend-
ing on which one-sided test is significant. To maintain the prob-
ability of a wrong rejection at prespecified significance level α in
case θ = θ0 is true, the two one-sided tests are run at the nomi-
nal significance level α/2.

Most practitioners are actually applying (sometimes implic-
itly) a directional two-sided test when inferring on a unidimen-
sional parameter. Some authors have objected, however, that a
point hypothesis θ = θ0 (contrary to a composite hypothesis)
is almost certainly false. For example, a null hypothesis stating
that the effects of two treatments A and B are equal is (in a strict
sense) false since one of the two treatments A or B is inevitably
superior to the other, even if not in a clinically relevant way.
Jones and Tukey (2000) referred therefore to “the fiction of the
null hypothesis” and concluded that “point hypotheses, while
mathematically convenient, are never fulfilled in practice.”
Other quotations from the literature include, for example, “the
null hypothesis is quasi-always false” (Meehl 1978), “all we
know about the world teaches us that the effects of A and B
are always different—in some decimal places—for any A and
B” (Tukey 1991), or “in most comparative clinical trials, the
point null hypothesis of no difference is not really believable”
(Freedman 2008). Considering the point hypothesis θ = θ0 to
be impossible implies that the two one-sided tests performed in
a directional two-sided test can actually be run at the nominal
significance level α (instead of α/2), yielding the three-decision
testing procedure by Jones and Tukey (2000).
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Of course, not having to divide the nominal significance level
by two when running the two one-sided tests implies a higher
probability of getting a significant result, such that Jones and
Tukey’s testing procedure is more powerful than Kaiser’s pro-
cedure. The price to pay for this gain of power is to assume
that the point hypothesis θ = θ0 is impossible, which might
be regarded as an infinitely mild assumption. There are how-
ever situations where a point hypothesis is indeed plausible; for
example, in mathematics, if one considers the hypothesis that
there are exactly 50% of odd digits among the decimals of π , or
in particle physics, when considering the well-accepted hypoth-
esis that an antielectron and an electron have the same mass,
or hypotheses derived from Einstein’s theories, among others.
In this article, we propose a five-decision testing procedure
that combines the advantages of the procedures of Kaiser (no
assumption on the point hypothesis being impossible) and Jones
and Tukey (higher power). Our five-decision rule simplifies to
that of Jones and Tukey if one assumes that a point hypothesis is
impossible, and evenwithout this assumption, yields an increase
of statistical power compared to Kaiser’s approach. As we will
briefly discuss, our approach offers subtly different interpreta-
tion of “plausible values” to what could be inferred by classical
confidence intervals, a topic which wouldmerit additional work
on its own.

Our five-decision testing procedure is described and its valid-
ity is established in Section 2. A comparison with existing
approaches is illustrated through an example in Section 3. Statis-
tical power and sample size calculation are examined in Section
4. Section 5 contains some concluding remarks.

2. A Five-Decision Testing Procedure

As done in Section 1, we consider some unidimensional param-
eter θ (e.g., a mean difference or a correlation) and some ref-
erence value of interest θ0 for this parameter (e.g., the value 0).
We consider the following hypotheses:H1 : θ ≥ θ0,H2 : θ > θ0,
H3 : θ = θ0,H4 : θ < θ0, andH5 : θ ≤ θ0.WhileH1,H2,H4, and
H5 are composite hypotheses that we shall try to reject using our
testing procedure,H3 is a point hypothesis thatwe refer to as “the
null hypothesis,” although it will be only a “working hypothesis”
in what follows. We then consider a test statistic Tstat , a random
variable with cdf Fθ (t ) = Prθ {Tstat ≤ t}, which depends on the
true value of θ , and we denote by tstat its realization calculated
from a sample of data. We make the following assumptions:
(A1) the distribution of Tstat under the null hypothesis (in

what follows, the null distribution), and hence Fθ0 (t ), is
known and let qα = F−1

θ0
(α) (where 0 < α < 1);

(A2) Fθ (t ) is monotone in θ , such that θ1 < θ2 implies
Fθ1 (t ) ≥ Fθ2 (t ) (for all t);

(A3) to avoid unnecessary complications in our exposition
below, we consider that the null distribution is truly
continuous, such that Prθ0{Tstat < t} = Prθ0{Tstat ≤ t}
(whatever t) and Fθ0 (qα ) = α (for all α).

Note that assumption (A1) is needed in any statistical test
involving a point null hypothesis, assumption (A2) is classical
(ensuring, e.g., unbiased tests and monotonicity of statistical
power), whereas assumption (A3) could be relaxed (although
this would require more complicated notations). Given a pre-
specified significance levelα, our five-decision testing procedure

Table . The five possible decisions of the proposed testing procedure run at the
significance level α (where tstat is the realization of the test statistic and q

α
is the

quantile α of the null distribution).

Decision Event Hypothesis rejected

 tstat < q
α/2 H1 : θ ≥ θ0

 q
α/2 ≤ tstat < q

α
H2 : θ > θ0

 q
α

≤ tstat ≤ q1−α None
 q1−α < tstat ≤ q1−α/2 H4 : θ < θ0
 q1−α/2 < tstat H5 : θ ≤ θ0

is defined in Table 1. To ensure mutually exclusive decisions, we
consider 0 < α ≤ 0.5. Note that the first, second, fourth, and
fifth decisions result in the rejection of a hypothesis, whereas
the third decision does not. Note also that some rejections are
supersets of other rejections, rejection of H1 implying rejection
ofH2 and rejection ofH5 implying rejection ofH4. As described
by Kaiser (1960) and Jones and Tukey (2000), when a hypothe-
sis is rejected, we consider the complementary hypothesis to be
implicitly accepted (which is particularly simple to define since
the rejected hypothesis involves only a unidimensional param-
eter). Thus, rejection of H1, H2, H4, and H5 implicitly implies
acceptance of H4, H5, H1, and H2, respectively.

Alternatively, as noted by an Associate Editor, our five-
decision testing procedure could be formulated as a combina-
tion of three traditional tests, each of them run simultaneously
(i.e., not in a sequential way) at the same significance level
0 < α ≤ 0.5, as defined in Table 2.

Although, in general, a testing procedure obtained as a com-
bination of tests that control the Type I error at some level α
is not guaranteed to control Type I error at α, we demonstrate
below that our five-decision testing procedure is valid. Recall
that a testing procedure is valid if the probability to make a
wrong rejection cannot exceed α, whatever the true value of
θ . Note first that if θ = θ0, one gets a wrong rejection when
the first or fifth decision occurs, that is, either when tstat < qα/2
or when tstat > q1−α/2. This kind of wrong rejection is known
as a Type I error. The probability that this happens is given
by

Prθ0{tstat < qα/2} + Prθ0{tstat > q1−α/2}
= Fθ0 (qα/2)+ 1 − Fθ0 (q1−α/2) = α/2 + 1 − (1 − α/2) = α.

Table . The five-decision testing procedure formulated as a combination of three
traditional tests, two one-sided tests, one to the left (OSL) where one tries to reject
H1 : θ ≥ θ0 , one to the right (OSR) where one tries to reject H5 : θ ≤ θ0 , and one
traditional two-sided test (TS) where one tries to reject the null hypothesis H3 :
θ = θ0 .

Hypothesis rejected in the

Decision Outcome of traditional tests
five-decision testing

procedure

 Reject both H1 (with OSL)
and H3 (with TS)

H1 : θ ≥ θ0

 Reject H1 (with OSL), not H3
(with TS)

H2 : θ > θ0

 Reject neither H1 , H5 nor H3
(with OSL, OSR and TS)

None

 Reject H5 (with OSR), not H3
(with TS)

H4 : θ < θ0

 Reject both H5 (with OSR)
and H3 (with TS)

H5 : θ ≤ θ0
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If θ < θ0, one gets a wrong rejection when the fourth or fifth
decision occurs, that is, when tstat > q1−α . In case of decision 5,
such a wrong rejection is sometimes referred to as a Type III
error (Kimball 1957; Leventhal and Huynh 1996; Shaffer 2002)
or “operational Type I error” (Senn 2007, p. 188). The probability
that this happens is given by

Prθ {tstat > q1−α} = 1 − Fθ (q1−α ) ≤ 1 − Fθ0 (q1−α )
= 1 − (1 − α) = α.

Thus, this probability is unknown but not larger than α. If θ >
θ0, one gets a wrong rejection when the first or second deci-
sion occurs, that is, when tstat < qα . In case of decision 1, this
is another example of Type III error. The probability that this
happens is given by

Prθ {tstat < qα} = Fθ (qα ) ≤ Fθ0 (qα ) = α.

Thus, whatever the true value of θ , the probability of making a
wrong rejection is unknown, but bounded by α, ensuring the
validity of the testing procedure, which is either correctly sized
if θ = θ0 or conservative if θ < θ0 or θ > θ0. If the null distribu-
tion is known only approximately, the testing procedure is still
approximately valid.

A typical example where assumptions (A1)–(A3) hold and
where the null distribution is known exactly (under some
conditions, such as normality and homoscedasticity) is a t-test.
Another example where the null distribution is known approx-
imately is a Wald test. In that case, the test statistic is defined
as Tstat = (θ̂ − θ0)/SE(θ̂ ), where θ̂ is a consistent and (asymp-
totically) normally distributed estimate of θ and SE(θ̂ ) is (a
consistent estimate of) the standard error of θ̂ (which is ideally
calculated under the null hypothesis), such that the null distri-
bution is approximately standard normal. One has in that case
qα ≈ zα , where zα = �−1(α) and �(t ) refers to the cdf of a
standard normal distribution. With α = 0.05, decisions 1–5 are
taken when tstat < −1.96, −1.96 ≤ tstat < −1.645, −1.645 ≤
tstat ≤ 1.645, 1.645 < tstat ≤ 1.96, and 1.96 < tstat, respectively.

3. Illustration

To illustrate our testing procedure, we consider the “Chick-
Weight” dataset available in the R base package. In that dataset,
50 chicks were followed during the first three weeks of life.
The chicks received different experimental protein diets (20
received diet 1, 10 diet 2, 10 diet 3, and 10 diet 4) and have been
weighed every two days. Figure 1 shows boxplots of the weight
measured after 20 days for the 10 chicks which received diet 2,
and for the 10 chicks which received diet 3. One can see that
the sample mean was higher with diet 3 than with diet 2 (258.9
vs. 205.6 g), whereas sample standard deviations were similar
(65.2 vs. 70.3 g), a pooled standard deviation being obtained as
((65.22 + 70.32)/2)1/2 = 67.8. Let μ2 and μ3 denote the true
means in these two groups and let θ = μ3 − μ2. The test statis-
tic of a two-sample t-test to try to reject the equality of the two
means is given by tstat = (10/2)1/2 · (258.9 − 205.6)/67.8 =
1.76. Recall that the null distribution is here a t-distribution
with 18 degrees of freedom, for which the 97.5% quantile is
given by q0.975 = 2.10 and the 95% by q0.95 = 1.73.

diet 2 diet 3
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Figure . Boxplots of the weight after  days for chicks nourished with diets 
and .

Since |tstat| ≤ q0.975, one fails to reject H3 : θ = 0 at the 0.05
significance level using a traditional two-sided test. Based on
this result, a researcher finds no statistically significant differ-
ence between the effects of diets 2 and 3 on chick weight. On
the other hand, since q0.95 < tstat, one is able to rejectH5 : θ ≤ 0
at the 0.05 significance level using a traditional one-sided test
to the right. While the results of the two tests do not agree on
the plausibility of the value θ = 0, they both agree on the fact
that values θ < 0 are implausible. However, as mentioned in the
previous section, it is not straightforward to combine the deci-
sions of three tests (a two-sided test and two one-sided tests)
with appropriate Type I error control. In contrast to this, the
five-decision testing procedure, as we will see below, is able to
reject H4 : θ < 0 while properly controlling for the probability
to make a wrong rejection.

In what follows, we discuss the results of the different testing
procedures presented above, run each at the α = 0.05 signifi-
cance level.

� Kaiser’s directional two-sided testing procedure: Since
|tstat| ≤ q0.975, we are not able to reject the null hypoth-
esis H3 : θ = 0 of no mean difference between the two
groups.

� Jones and Tukey’s testing procedure: Since q0.95 < tstat, and
assuming that the null hypothesisH3 : θ = 0 is impossible,
we are able to reject the hypothesis H5 : θ ≤ 0.

� Five-decision testing procedure: Since q0.95 < tstat ≤ q0.975,
and without assuming that the null hypothesis is impossi-
ble, we are able to reject the hypothesisH4 : θ < 0.

In other words, one may concludeH2 : θ > 0 (the true mean
with diet 3 is strictly higher than the true mean with diet 2)
using Jones and Tukey’s testing procedure, and one may con-
clude H1 : θ ≥ 0 (the true mean with diet 3 is at least as high
than the true mean with diet 2) using the five-decision testing
procedure, whereas no such conclusion can be reached using
Kaiser’s testing procedure (the same statement applying also
to a traditional two-sided test, since a null hypothesis which
is not rejected using Kaiser’s directional two-sided test is also
not rejected using a traditional two-sided test). If the goal is to
choose one of the two diets, one can thus confidently choose
diet 3, as with such a decision the outcome cannot be worse,
and is possibly better than with diet 2. This information pro-
vided by our proposed testing procedure is certainly more use-
ful than the information provided by the traditional approach,
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Figure . Decision (rejection) achieved when using the five-decision testing proce-
dure at significance level (a) α = 0.1, (b) α = 0.05, and (c) α = 0.01, depending
on the value of the test statistic, in the context of our example (i.e., a two-sample
t-test, where the null distribution is a t-distribution with  degrees of freedom).
With a calculated value of tstat = 1.76 (vertical line), one rejects H5 : θ ≤ 0 at the
. level,H4 : θ < 0 at the . level, while no hypothesis can be rejected at the .
level (where θ is themeandifference ofweights between chicks nourishedwith diet
 and diet ).

stating that either diet can be better and offering no guidance
whatsoever.

This example thus illustrates what can be gained using the
five-decision testing procedure compared to the traditional
approach, without making any extra assumption. Moreover, if
one is ready to make the extra assumption that the null hypoth-
esis is impossible (an assumption which in this example would
actually be quite reasonable), H1 : θ ≥ 0 is then implying H2 :
θ > 0, such that the same conclusion is reached using the five-
decision testing procedure or using Jones and Tukey’s approach.

Figure 2 illustrates what happens when performing the
five-decision testing procedure at different significance levels,
showing the decision achieved as a function of the value of
tstat in the context of our example (i.e., a two-sample t-test
where the null distribution is a t-distribution with 18 degrees
of freedom). With tstat = 1.76, while we just saw that one
rejects H4 : θ < 0 at the 0.05 significance level, one can see
on that figure that one rejects H5 : θ ≤ 0 at the 0.1 signifi-
cance level (which is a rejection that also implies rejecting H4),
whereas no hypothesis can be rejected at the 0.01 significance
level.

It is well known that one rejects the null hypothesis θ = 0 in
a traditional two-sided two-sample t-test at the 0.05 significance
level if and only if the value 0 lies outside a 95% confidence inter-
val for θ . In Kaiser’s testing procedure, one then rejects θ ≥ 0 if 0
lies on the right of the confidence interval, and one rejects θ ≤ 0
if 0 lies on the left of the confidence interval. To get informed
about the outcome of the five-decision testing procedure at the
0.05 significance level, one needs to calculate a 90%, in addition
to a 95% confidence interval for θ , and proceed as follows:
(Decision 1) rejectH1 : θ ≥ 0 if the value 0 is found on the right
of the 95% confidence interval,
(Decision 2) reject H2 : θ > 0 if the value 0 is found
on the right of the 90%, but within the 95% confidence
interval,
(Decision 3) no rejection if the value 0 is found within the 90%
confidence interval,

(Decision 4) reject H4 : θ < 0 if the value 0 is found on the left
of the 90%, but within the 95% confidence interval,
(Decision 5) reject H5 : θ ≤ 0 if the value 0 is found on the left
of the 95% confidence interval.

In our example, a 95% confidence interval for θ is given by
[−10.4; 117.0] while a 90% confidence interval for θ is given
by [0.7; 105.9]. Since the value 0 belongs to the 95% confidence
interval while being on the left of the 90% confidence interval,
one (again) rejectsH4 : θ < 0 at the 0.05 significance level. Since
the classical 95% confidence interval here includes negative and
positive values, the claim that negative values are implausible
cannot be compelling without further discussion that would
exceed the scope of this paper. It highlights a risk of routine
interpretations of classical confidence intervals—a well-known
issue in statistical practice, as pointed by an Associate Editor.

4. Statistical Power and Sample Size Calculation

Whereas the significance level α of a testing procedure is the
(maximal) probability to (wrongly) reject a hypothesis that is
true, the statistical power ψ can be defined as the probabil-
ity to (correctly) reject a hypothesis which is false. We pro-
vide below formulas for the statistical power achieved with our
five-decision testing procedure in the case of a Wald test (note
that formulas provided in this section are asymptotic and may
require large sample sizes to become accurate):

� in the case θ < θ0, the probability to (correctly) rejectH1 :
θ ≥ θ0 (decision 1) is given by

ψ1 = Prθ {tstat < zα/2} = �(zα/2 + (θ0 − θ )/SE(θ̂ ))

� in the case θ ≤ θ0, the probability to (correctly) rejectH2 :
θ > θ0 (decision 1 or 2) is given by

ψ2 = Prθ {tstat < zα} = �(zα + (θ0 − θ )/SE(θ̂ ))

� in the case θ ≥ θ0, the probability to (correctly) rejectH4 :
θ < θ0 (decision 4 or 5) is given by

ψ4 = Prθ {tstat > zα} = �(zα + (θ − θ0)/SE(θ̂ ))

� in the case θ > θ0, the probability to (correctly) rejectH5 :
θ ≤ θ0 (decision 5) is given by

ψ5 = Prθ {tstat > zα/2} = �(zα/2 + (θ − θ0)/SE(θ̂ )).

As an example, let us consider α = 0.05 and a case with θ >
θ0, where the difference between θ and θ0 expressed in “standard
error units” is given by (θ − θ0)/SE(θ̂ ) = 2.5. The probability
to (correctly) reject H5 : θ ≤ θ0 is given by ψ5 = �(−1.96 +
2.5) = 70.5%, whereas the probability to (correctly) reject H4 :
θ < θ0 is given byψ4 = �(−1.645 + 2.5) = 80.4%. The power
to reject a strict inequality (H4) is logically higher than the power
to reject a nonstrict inequality (H5). Note also that if one con-
siders the null hypothesis to be impossible, rejecting H4 will
be equivalent to rejecting H5, enabling an increase of statistical
power from 70.5% to 80.4%.

An increase of statistical power allows in turn a reduction of
the sample size n needed to reach a given statistical power when
designing a study. In the case of a Wald test where the standard
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Table . Relative sample size reduction achievedwhen calculating a sample size for
rejecting a strict inequality, compared to a traditional sample size calculation for
rejecting only a nonstrict inequality, as a function of statistical powerψ and signif-
icance level α according to ().

ψ = 50% ψ = 80% ψ = 90% ψ = 95% ψ = 99%

α = 0.05 % % % % %
α = 0.01 % % % % %
α = 0.001 % % % % %

error of the estimate θ̂ is given by SE(θ̂ ) = τ/
√
n (not depend-

ing on the true value of θ), the sample size needed to reject a non-
strict inequality (H1 : θ ≥ θ0 or H5 : θ ≤ θ0) with given proba-
bility (power) ψ is given by

n = (z1−α/2 + zψ )2τ 2

(θ − θ0)2
, (1)

whereas the sample size needed to reject a strict inequality (H2 :
θ > θ0 orH4 : θ < θ0) with given probability (power)ψ is given
by

n = (z1−α + zψ )2τ 2

(θ − θ0)2
. (2)

Compared to a traditional sample size calculation (1) for reject-
ing only a nonstrict inequality, the sample size calculated via (2)
for rejecting a strict inequality, as enabled in our testing proce-
dure, yields a relative reduction of sample size of:

(z1−α/2 + zψ )2 − (z1−α + zψ )2

(z1−α/2 + zψ )2
. (3)

Table 3 provides such examples of sample size reduction (3) as a
function of ψ and α. Thus, having settled for rejecting a strict
rather than a nonstrict inequality, which will be of particular
interest for those assuming the null hypothesis to be impossible
(since both rejections are then equivalent), enables, for example,
a reduction of sample size of 21% in a study targeting a statistical
power of ψ = 80% with α = 0.05.

To further illustrate such sample size reduction and that for-
mulas (1) and (2) can also be useful when using an exact test,
we consider an example where one would attempt to show that
a treatment A is superior to a treatment B via a two-sample t-
test. The parameter of interest is here θ = μA − μB, where μA
andμB represent the truemeans of some continuous health out-
come, characterizing the effects of treatments A and B, the refer-
ence value being θ0 = 0 and the null hypothesis H3 : μA = μB.
The test statistic is given by tstat = √

n/2(x̄A − x̄B)/s with s2 =
(s2A + s2B)/2, where x̄A and x̄B denote the sample means and s2A
and s2B the sample variances of the health outcome calculated
from two samples of size n. Assuming a normal distribution and
the same variance σ 2 for both treatments, the null distribution
is a t-distribution with 2n − 2 degrees of freedom, which can be
approximated by a standard normal distribution for a large n, as
in a Wald test. If the goal is to reject H5 : μA ≤ μB, expecting
a “medium” treatment effect expressed as (μA − μB)/σ = 0.5
(Cohen 1988), using a significant level α = 0.05, and targeting
a statistical power of ψ = 80%, one may calculate a sample size

via (1) of (noting that SE(θ̂ ) = √
2σ 2/n, such that τ 2 = 2σ 2):

n = (z1−α/2 + zψ )2 · 2σ 2

(μA − μB)2
= 2(1.96 + 0.84)2

0.52
= 63.

Now, if one considers that the null hypothesis H3 : μA = μB is
impossible (i.e., that the two treatments cannot have exactly the
same effect), the goal will be just to reject the hypothesis H4 :
μA < μB and one will calculate a sample size via (2) of:

n = (z1−α + zψ )2 · 2σ 2

(μA − μB)2
= 2(1.645 + 0.84)2

0.52
= 50,

achieving a (63 − 50)/63 = 21% reduction of sample size.
Under such assumptions, one can check via simulation that the
probability to reject H5 : μA ≤ μB (decision 5 from our test-
ing procedure) via a two-sample t-test with two groups of size
n = 63, that is, to get tstat > 1.979 (the quantile 97.5% of a
t-distribution with 124 degrees of freedom), is about 79.3%,
whereas the probability to reject H4 : μA < μB (decision 4 or
decision 5 from our testing procedure) with two groups of size
n = 50, that is, to get tstat > 1.661 (the quantile 95% of a t-
distribution with 98 degrees of freedom) is about 79.7% (esti-
mated from 100,000 simulations), both reasonably close to the
targeted power of 80%.

5. Conclusions

The formulation of hypothesis testing proposed byKaiser (1960)
and Jones and Tukey (2000) allows one to perform on the same
data two traditional one-sided tests, trying to reject two dif-
ferent composite hypotheses. Since the corresponding alterna-
tive hypotheses are also one-sided, interpretation of a significant
result is straightforward. As we no longer have to divide by two
the nominal significance level when performing these two tests,
as advocated by Jones and Tukey (2000), we achieve “the abo-
lition, once and for all, of the controversy over whether a one-
sided or two-sided test is appropriate” (Freedman 2008, 2009).
Note that a similar procedure is used in bioequivalence studies,
where two one-sided tests, run to reject two disjoint composite
hypotheses, are also typically conducted at 0.05, and where the
calculation of a 90% (instead of a 95%) confidence interval has
been advocated (Westlake 1981; Schuirmann 1987).

In this article, we have introduced a five-decision testing pro-
cedure which can be seen as a modest (but hopefully useful)
extension of both approaches. On the one hand, this is an exten-
sion of Kaiser’s testing procedure from a three- to five-decision
testing procedure (our decisions 2 and 4 being absent from
Kaiser’s procedure, in fact merged with our decision 3). Further-
more, our five-decision testing procedure reduced to Jones and
Tukey’s three-decision testing procedure if the null hypothesis
is considered to be impossible (decision 1 being then equiva-
lent to decision 2, and decision 5 being equivalent to decision
4). Importantly, the five-decision testing procedure can be used
both by those who believe in the plausibility of the null hypoth-
esis and those who do not. For the former, our approach is still
more powerful than Kaiser’s approach, allowing to distinguish
between the rejection of a strict and of a nonstrict inequality.
For the latter, it is as powerful as Jones and Tukey’s approach,
allowing a nonnegligible reduction of the sample size needed to
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reach a given statistical power compared to a traditional sam-
ple size calculation, for example, of 21%, as illustrated in our
example of Section 4, although this calculation was based on
asymptotic formulas andmay need large sample sizes to become
effective.

Although our approach is clearly frequentist, it is interesting
to see how allowing the option of believing or not in the plau-
sibility of a null hypothesis reflects Bayesian thinking. While
controlling the probability to make a wrong rejection is not a
Bayesian concept, one considers in a Bayesian context a prior
and a posterior distribution for a parameter θ , such that it is
also possible to assign prior and calculate posterior probabili-
ties associated to the hypothesesH1,H2,H3,H4, andH5 consid-
ered above. In that context, those believing in the plausibility of
the null hypothesis should assign a nonzero prior probability to
H3, translating to a noncontinuous prior distribution for θ (with
a point mass at the reference value θ0) in Bayesian inference.
As a consequence, the posterior probabilities for (and hence
Bayesian inference about) H1 and H5 will be different than for
H2 andH4, respectively. In the other case (H3 being impossible),
the posterior probabilities for (and hence Bayesian inference
about)H1 andH5 are the same than forH2 andH4, respectively.
Therefore, a common point in Bayesian inference and our five-
decision testing procedure is that believing or not in the plausi-
bility of the null hypothesis H3 affects inference on H1, H2, H4,
and H5.
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