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breast cancer in screening trials
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Abstract

Cancer screening can detect cancer that would not have been detected in a patient’s lifetime without screening. Standard

methods for analyzing screening data do not explicitly account for the possibility that a fraction of tumors may remain

latent indefinitely. We extend these methods by representing cancers as a mixture of those that progress to symptoms

(progressive) and those that remain latent (indolent). Given sensitivity of the screening test, we derive likelihood

expressions to simultaneously estimate (1) the rate of onset of preclinical cancer, (2) the average preclinical duration

of progressive cancers, and (3) the fraction of preclinical cancers that are indolent. Simulations demonstrate satisfactory

performance of the estimation approach to identify model parameters subject to precise specifications of input

parameters and adequate numbers of interval cancers. In application to four breast cancer screening trials, the

estimated indolent fraction among preclinical cancers varies between 2% and 35% when assuming 80% test sensitivity

and varying specifications for the earliest time that participants could plausibly have developed cancer. We conclude that

standard methods for analyzing screening data can be extended to allow some indolent cancers, but accurate estimation

depends on correctly specifying key inputs that may be difficult to determine precisely in practice.

Keywords

Breast cancer, indolent cancer, mammography screening, maximum likelihood estimation, overdiagnosis, randomized

controlled trials

1 Introduction

In recent years, overdiagnosis due to cancer screening has become a focus of attention and controversy.
Overdiagnosis occurs when screening detects a cancer that would not have produced symptoms or have been
diagnosed in the absence of screening. If a cancer is overdiagnosed, then treatment cannot be beneficial; in this
case, it is considered overtreatment.

Some studies have suggested that overdiagnosis may account for as many as 31% of breast cancers detected,1

but there is a great deal of uncertainty about the magnitude of the problem due to different definitions and
measures of overdiagnosis and different assumptions imposed across studies.2

Understanding overdiagnosis requires understanding the natural history of cancer and its heterogeneity.
Of prime importance are the distributions of the preclinical sojourn time (i.e. the time from onset of a
preclinical tumor to clinical diagnosis in the absence of screening) and the associated lead time (i.e. the time by
which screening advances the date of diagnosis). The sojourn time distribution is a direct determinant of the
likelihood of overdiagnosis since overdiagnosis occurs whenever the sojourn time is longer than the time from
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screen detection to other-cause death. Thus, overdiagnosis may be thought of as arising from a process of
competition between clinical diagnosis and other-cause death.

There is extensive literature on the estimation of sojourn and lead times using data from screening trials. The most
common approach is based on maximum likelihood estimation of the sojourn time while accounting for interval
censoring of the times to onset and times from onset to clinical diagnosis. Day andWalter3 and Shen and Zelen4,5 used
this approach assuming a parametric progressive disease model with an exponential distribution for sojourn time.
Louis et al.6 and Etzioni and Shen7 explored methods for this problem that did not require a parametric specification
for the sojourn-time distribution. Shen and Zelen8 and Shen and Huang8 developed a robust version of this approach.

The aforementioned methods all rely on a progressive disease assumption, which is most often expressed as a
single-component distribution (commonly exponential) for the sojourn time. In this case, overdiagnosis arises from
competing mortality together with potentially slow-growing but progressive disease. However, it has been
suggested that breast and other cancers may consist of a mixture of progressive and indolent cancers.9 In this
setting, overdiagnosis can arise from indolent cancers in addition to competing mortality for progressive cancers.
Etzioni and Gulati10 recently showed that ignoring the indolent component could lead to underestimation of the
fraction of cancers overdiagnosed, particularly under short-term follow-up. Few studies of overdiagnosis in breast
cancer explicitly account for an indolent fraction. However, even among those that have done so,11–14 estimation
methods tend to be highly customized.

Most published studies of cancer overdiagnosis do not even attempt to estimate natural history. Rather,
they use excess incidence in screened versus non-screened groups as a proxy for overdiagnosis.1,15 However,
this method has been shown to be systematically biased16,17 even in randomized trials, and is prone to
overestimation except under fairly specific circumstances.18

In this paper, we extend the probability modeling framework of Shen and Zelen4 to estimate natural history
comprised of a mixture of progressive and indolent cancers using data from screening trials. This extension
estimates the risk of developing preclinical cancer, the mean sojourn time for progressive cancers, and the
fraction of preclinical cancers that are indolent. We demonstrate the framework using data from four breast
cancer screening trials. Our extension of established methods for estimating cancer natural history is a
necessary precursor to estimate the frequency of overdiagnosis under any specified screening protocol.

2 Methods

2.1 Data and notation

Consider a cohort of asymptomatic individuals enrolled in a screening program with regular (e.g. annual)
screening exams. In Shen and Zelen,4 the natural history of the disease is modeled as transitions from a
healthy or cancer-free state (S0) to a preclinical state (Sp) to a clinical state (Sc) (Figure 1(a)). An underlying
assumption is that all individuals would eventually transition out of the preclinical state and into the clinical state
given sufficient follow-up. We generalize this assumption by assuming that a fraction of patients develop tumors
that will remain in the preclinical state (Sp0) indefinitely (Figure 1(b)).

In our motivating breast cancer screening trials, asymptomatic participants in the screening arm were invited to
receive regular screening exams. The observed data were grouped by screening rounds as follows.

(a)

(b)

Figure 1. Standard and generalized multi-state models of cancer natural history. In either model, an individual begins in a healthy or

cancer-free state (S0), can enter the preclinical state (Sp), and can progress to the clinical state (Sc). (a) All cancers progress to the

clinical state. (b) Cancers can progress to the clinical state or remain indolent indefinitely (Sp0 ).
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Let t1 5 � � �5 tk�1 represent the k� 1 scheduled exams and let tk denote the follow-up time after the last exam.
For i ¼ 1, . . . , k� 1, let ni be the number of individuals at the ti exam, si the number of cancers detected at the ti
exam, and ri the number of so-called ‘‘interval cancers’’ diagnosed in the interval between the ti and tiþ1 exams.
Thus, the data associated with the i th screening round are ðni, si, riÞ.

To estimate the underlying cancer development and progression when all cancers are progressive, let w denote
the annual probability of latent disease onset. As shown in Figure 1, let U denote the sojourn time measured from
onset of preclinical state (Sp) to clinical state (Sc), and let qðtÞ and Q tð Þ ¼ Pr U4 tð Þ denote the corresponding
probability density and survivor functions, respectively, with parameter l. Finally, let � be the sensitivity of the
screening exam to detect latent cancer; we assume the test sensitivity is the same for progressive and indolent
cancers. Then the unknown parameters are � ¼ ðw, l,�Þ.

To allow a fraction of individuals with indolent cancers, we consider a distribution of sojourn times that is a
mixture as follows

Q tð Þ ¼ 1�  ð ÞPr U4 t j U51ð Þ þ  ¼ 1�  ð ÞQ1 tð Þ þ  

where Q1ðtÞ is a proper survivor function representing progressive sojourn times and  is the fraction of cancers
with infinite sojourn times (i.e. indolent cancers). If l is the parameter associated with Q1ðtÞ or the associated
probability density function q1ðtÞ, the unknown parameters are � ¼ ðw, l, ,�Þ.

2.2 Estimation and inference from the likelihood

The proposed estimation procedure extends previous work by Shen and Zelen,4 who developed a maximum
likelihood procedure to fit to the observed screen-detected and clinically diagnosed cancer data in a prospective
screening study. Estimating the parameters of a mixture of cancers can be done using an approach that is similar to
the one for estimating the parameters when all cancers are progressive.4 Briefly, the data available for a given
individual consist of a screening history with screening test results and time of diagnosis or last follow-up. In the
case of a screen-detected cancer, the final screening test is positive. In the case of an interval cancer, the final
screening test is negative and diagnosis occurs at a known date thereafter. In each case, the screening history and
diagnosis status provide information about the natural history.

For example, a case where a first screening test is negative and a second screening test is positive with disease
diagnosis occurring at the time of this test provides the following information: (a) preclinical onset must have
occurred before the time of diagnosis; (b) the sojourn time must be at least as long as the interval from preclinical
onset to the second screening test; (c) if preclinical onset occurred before the first screening test, then the individual
had one false negative test; and (d) the individual had one true positive test. There are several natural histories that
are consistent with this information, and all possible histories could apply to a progressive cancer or to an indolent
cancer (Figure 2(a)). In contrast, an interval cancer must be progressive (Figure 2(b)). In general, the likelihood
comprises probabilities of diagnosis at and after each screening test expressed in terms of parameters
� ¼ ðw, l, ,�Þ and fits these within a multinomial framework given the observed numbers of cancers detected
at and after each test.

(a) (b)

Figure 2. Possible clinical histories for cancers detected (a) by a screening exam or (b) between screening exams. Shaded bands

represent preclinical durations. Screening exams can detect (true positive) or miss (false negative) progressive or indolent preclinical

cancer. However, only cancers that progress to a clinical state can present in the interval between screening exams.
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Let Dið�Þ be the probability that cancer is detected at the i th exam and Iið�Þ be the probability of an interval
diagnosis in the i th interval. To derive expressions for these probabilities, first note that prevalence of latent
disease at the first exam can be written

P0ðt1Þ ¼ w

Z t1

t0

Qðt1 � uÞdu

where t0 is the earliest time before the start of the trial at which any prevalent cancers among trial participants
could plausibly have developed. Let �0 ¼ t1 � t0. The probability of screen detection at the first exam is
D1 �ð Þ ¼ �P0 t1ð Þ.
Because latent cancer detected at a given exam either only became detectable after the previous exam or was

missed during one or more previous exams, the general expression for the probability of a latent cancer being
screen detected at exam tj (j ¼ 2, . . . , k� 1) is

Dj �ð Þ ¼ �
Xj
l¼1

wð1� �Þj�l
Z tl

tl�1

Q tj � u
� �

du:

Similarly, a cancer diagnosed in an interval between screens either only became detectable after the previous
exam or was latent and missed by one or more previous exams. The probability of an interval diagnosis between
exams t1 and t2 is

I1 �ð Þ ¼ wð1�  Þ

Z t2

t1

1� �ð Þ

Z t1

t0

q1 t� uð Þduþ

Z t

t1

q1 t� uð Þdu

� �
dt

The general expression for an interval diagnosis between tj and tjþ1 (j ¼ 2, . . . , k� 1) is

Ij �ð Þ ¼ w 1�  ð Þ

Z tjþ1

tj

Xj�1
l¼0

1� �ð Þ
j�l

Z tlþ1

tl

q1 t� uð Þduþ

Z t

tj

q1 t� uð Þdu

" #
dt

It is intuitive that indolent cancers can only be detected by screening and thus only contribute to Dj ð�Þ. In
contrast, progressive cancers can be detected by screening and contribute to Dj ð�Þ or be interval diagnosed and
contribute to Ij ð�Þ. The associated trinomial log-likelihood function is

l �ð Þ /
Xk
j¼1

sj log Dj �ð Þ
� �

þ rj log Ij �ð Þ
� �

þ ðnj � sj � rj Þlog 1�Dj �ð Þ � Ij �ð Þ
� �� 	

Due to concerns about identifiability of all model parameters, we consider the test sensitivity parameter (�)
known and estimate the annual probability of preclinical onset (w), the mean sojourn time among progressive
cancers (l), and the fraction of indolent cancers ( ). We use external data to provide an estimate of � based on
prior studies.4,5,19 Although long-term follow-up after the final screening test helps to identify the parameters,10

this may not be available in practice;20 thus, we focus on the case where we have only short-term follow-up (equal
to the inter-screening interval) after the last screening test as in the motivating screening trials.

Under this model, one focus of interest is to test the null hypothesis  ¼ 0, i.e. the lower boundary of the
parameter space ½0, 1Þ. Therefore, the asymptotic distribution of the likelihood ratio test has a nonstandard form in
a discontinuous way, which should be properly adjusted.21

2.3 Simulation study

We conducted a simulation study to assess the performance of the proposed estimation method. The assumptions
and parameter settings in the simulation were motivated by published studies of breast cancer natural history.4

We specified a constant annual preclinical onset probability and indolent cancer frequency starting �0 ¼ 20 years
before entry to the trial. We used an exponential distribution for the sojourn time among progressive cancers and a
constant annual latent incidence corresponding to a one-year net cumulative incidence of 3 per 1000 women.
We set the inter-screening interval to be one year, test sensitivity to be 70%, 80%, or 90%, mean sojourn time for
progressive cancers to be 1.5 or 2.5 years, and the indolent fraction to be 0%, 5%, and 15%. Under each scenario,
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we examined the bias of our parameter estimates, standard errors (SEs), and the power of the likelihood ratio test
of the hypothesis that  ¼ 0. We generated a cohort of 50,000 individuals undergoing four exams with follow-up
after the last exam equal to the inter-screening interval. We repeated the simulations 2000 times for each scenario.

Based on the simulation results (Table 1), estimates of the indolent fraction ( ̂) and the mean sojourn time
among progressive cancers (l̂) were virtually unbiased for the setting with short preclinical sojourn times among
progressive cancers (l ¼ 1:5 years) and a low frequency of indolent cancers ( � 0:05). Under a higher frequency
of indolent cancers, the estimated indolent fraction was somewhat higher than its true value and the mean sojourn
time among progressive cancers was underestimated. When the indolent fraction and the progressive mean sojourn
time were at their highest settings, the model was least able to differentiate between indolent tumors and
progressive tumors with longer sojourn times.

In an extended simulation study, we varied the first time a latent cancer can develop across �0 ¼ 20, 10, and 5
years before entry to the trial, set the inter-screening interval to � ¼ 1 or 2 years, and varied the indolent fraction
across 0%, 5%, 10%, and 25% (see Supplementary Materials). With a longer screening interval (� ¼ 2), the
estimates were less biased, which is likely due to the increased frequency of interval cancers. Indeed, interval
cancers are more informative about sojourn times than screen-detected cancers. In all scenarios, the rate of onset
of preclinical cancer was estimated accurately. When preclinical cancer can develop �0 ¼ 20 years before entry,
estimates of the mean sojourn time were negatively biased, and estimates of the indolent fraction were positively
biased, especially for larger values of the indolent fraction. When preclinical cancer can only develop closer to
entry into the trial (�0 ¼ 5 or 10 years), the bias in both estimates was larger in magnitude but less sensitive to the
value of the indolent fraction.

To assess the robustness of the estimators against misspecification of the test sensitivity, we fixed the true value
at � ¼ 0:80 and specified values above or below this value ( ~� ¼ 0:70 and 0:90). When ~� ¼ 0:70, the estimated
fraction of indolent cancers and the mean sojourn time for progressive cancers were overestimated, but
the estimates generally differed only modestly from their true values (not shown). In contrast, when ~� ¼ 0:90,
the estimate of the indolent fraction tended to be nearly unbiased but the mean sojourn time for progressive
cancers was underestimated. These results are reasonable because, when the true test sensitivity is underestimated,

Table 1. Simulation study of the proposed estimation approach when the risk of developing preclinical

cancer is w ¼ 0:003 starting �0 ¼ 20 years before entry with screening interval � ¼ 1.

Parameter settings Parameter estimatesa

Type I error

or powerb

Screen

sensitivity

Mean

sojourn

Indolent

fraction

Mean

sojourn

Indolent

fraction

� l  l̂ SEðl̂Þ  ̂ SEð ̂Þ

0.70 1.5 0.00 1.42 0.13 0.01 0.01 0.05

0.05 1.30 0.20 0.06 0.02 0.97

0.15 0.94 0.19 0.20 0.03 1.00

2.5 0.00 2.36 0.24 0.01 0.02 0.03

0.05 2.24 0.41 0.07 0.03 0.57

0.15 1.69 0.43 0.21 0.04 0.97

0.80 1.5 0.00 1.44 0.12 0.01 0.01 0.05

0.05 1.37 0.18 0.06 0.02 0.95

0.15 1.15 0.18 0.18 0.02 1.00

2.5 0.00 2.37 0.22 0.01 0.01 0.04

0.05 2.35 0.39 0.06 0.03 0.59

0.15 1.97 0.37 0.20 0.03 0.98

0.90 1.5 0.00 1.45 0.11 0.01 0.01 0.05

0.05 1.45 0.17 0.06 0.02 0.94

0.15 1.32 0.18 0.17 0.02 1.00

2.5 0.00 2.39 0.20 0.01 0.01 0.05

0.05 2.42 0.35 0.06 0.03 0.62

0.15 2.21 0.37 0.18 0.03 0.99

aIn all settings, the estimated onset rate is ŵ ¼ 0:003 with SEðŵÞ ¼ 0:0001.
bThis column shows the type I error rate when  ¼ 0 and power when  4 0.
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the estimation procedure compensates by identifying parameters that yield increased latent prevalence at screening
tests; conversely, when the true test sensitivity is overestimated, the estimation procedure identifies parameters that
yield reduced latent prevalence at screening tests.

2.4 Analysis of breast cancer screening clinical trials

We analyzed data from the Health Insurance Plan (HIP) of New York study,22,23 the Canadian National Breast
Screening Study (CNBSS),24,25 and the Swedish Two-county Trial26,27 to estimate the frequency of indolent
cancers among preclinical breast cancers. In these trials, participants in the screening arm were invited to
receive an initial screening test and 2–3 additional screening tests.

The HIP study was the first randomized trial designed to determine the efficacy of breast cancer screening with
mammography and clinical breast exam (CBE) in reducing mortality from breast cancer.22,23,28 More than 63,000
women aged 40–64 with at least one year of membership in the insurance plan were eligible. After excluding
women who had breast cancer, about 62,000 women were randomized. About 65% (n¼ 20 166) of the women in
the screening group appeared for their initial examination; high proportions of these women (75%) participated in
the subsequent re-examinations.

The CNBSS was designed to evaluate the efficacy of annual mammography plus CBE relative to CBE alone.
CNBSS-I enrolled women aged 40–49 years and CNBSS-II women aged 50–59 years who had no history of
breast cancer and no mammograms in the previous 12 months.24,25 In CNBSS-I, 25,214 women were
randomized to the screening group underwent the first screening exam. In CNBSS-II, 19,711 women underwent
the first screening exam.

The Swedish Two-county Trial examined efficacy of screening mammography relative to no screening.26,27 This
trial enrolled 77 080 women aged 40–74 years in the screening arm and invited women aged 40–49 to screening
exams every two years and women aged 50–74 to screening exams every 33 months, so the average screening
interval was 2.6 years for the total screening cohort.12 Some 68,770 women underwent the first screening exam.

Breast cancers detected by screening exam and interval cancers are summarized in Table 2. Only data from the
first three exams are shown for the Swedish Two-county Trial because this trial was closed and the control arm was
invited to screening at this time. Test sensitivity pertains to screening mammography plus CBE in the HIP and
CNBSS studies and to screening mammography alone in the Swedish Two-country study. Given external estimates
of test sensitivity, which range from 0.70 to 0.90 from eight randomized breast cancer screening trials,4,5,19 we
estimate the unknown model parameters and test whether the indolent fraction is zero using a likelihood ratio test.
We use the bootstrap method to estimate standard deviations of the parameter estimates with 300 re-samplings.

Table 2. Summary results of screening arms in four breast cancer screening trials.

Screening exam

First Second Third Fourth

HIP

Total participants 20,166 15,936 13,679 11,971

No. of screen-detected cancers 55 32 18 27

No. of interval cancers 13 8 10 10

CNBSS-I

Total participants 25,214 22,424 22,066 21,839

No. of screen-detected cancers 98 39 44 52

No. of interval cancers 19 16 8 10

CNBSS-II

Total participants 19,711 17,669 17,347 17,193

No. of screen-detected cancers 142 66 43 54

No. of interval cancers 15 10 8 9

Swedish Two-county

Total participants 68,770 58,601 43,320

No. of screen-detected cancers 384 214 173

No. of interval cancers 123 78 89
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For the HIP, CNBSS-II, and the Swedish Two-county Trials, we set �0 to be four years, and for the CNBSS-I
trial, which enrolled younger women (age 40–49 at entry), we set �0 to be two years. Since the value of �0 is not
known, we also examine results for �0 ranging from 1 to 5 years as well as an extreme value of 10 years while
varying values of the test sensitivity from 0.70 to 0.90 in the sensitivity analyses.

2.5 Results from the HIP trial

The estimated parameters and their standard errors are summarized in Table 3. Depending on the assumed
sensitivity of screening mammography plus CBE between 0.70 and 0.90, the estimated rate of preclinical onset
was 2.1–2.3 women per 1000 person-years, which is similar to published detection rates of histologically confirmed
breast cancer of 2.1 in the screening arm.23 The estimated mean sojourn time for progressive cancers varied from
1.2 to 1.7 years, which is somewhat lower than previous estimates of 1.7 to 2.5 years when the possibility of
indolent cancers was ignored.3,5 The estimated indolent fraction varied from 32% if test sensitivity was 0.70 to 0%
if test sensitivity was 0.90.

Our sensitivity analysis revealed that convergence to the lower boundary (0%) for the indolent fraction
occurred for either higher assumed test sensitivity or for a greater number of years at which onset could occur
before the start of the trial (Figure 3); this was particularly the case for �0 ¼ 10 years, where the estimated
indolent fraction converged to 0% under all settings for sensitivity. Both of these settings increase the prevalent
pool at the first screening test and, in accordance, with the simulation studies, we find that the estimation
algorithm yields a correspondingly reduced estimate of the indolent fraction.

2.6 Results from the CNBSS trials

As shown in Table 3, the estimated mean sojourn time for progressive cancers is comparable in CNBSS-I (2.7–3.6
years) and CNBSS-II (2.3–3.5 years) to previous estimates in Shen and Zelen.5 Further, the estimated indolent
fraction varies from 48% if test sensitivity is 0.70 to 0% if test sensitivity is 0.90.

Figure 3 illustrates sensitivity of the parameter estimates to test sensitivity (� ranging from 0.70 to 0.90) and the
latent onset time origin (�0 ranging from 1 to 5 years). The figure shows that estimates of l and  are quite
sensitive to these inputs, whereas the estimate of w is more robust. Estimates of  are most sensitive to the test

Table 3. Estimated parameters in four breast cancer screening trials.

Triala

Screen

sensitivity

Parameter estimates

P-valueb

Preclinical onset Mean sojourn Indolent Fraction

� ŵ SDðŵÞ l̂ SDðl̂Þ  ̂ SEð ̂Þ

HIP

0.70 0.0021 0.0002 1.20 0.55 0.32 0.14 0.03

0.80 0.0022 0.0002 1.68 0.40 0.08 0.12 0.10

0.90 0.0023 0.0002 1.58 0.25 0.00 0.07 0.17

CNBSS-I

0.70 0.0027 0.0002 3.40 1.78 0.23 0.22 0.50

0.80 0.0027 0.0002 3.55 1.34 0.02 0.25 0.32

0.90 0.0027 0.0002 2.73 0.96 0.00 0.26 0.22

CNBSS-II

0.70 0.0033 0.0002 2.30 2.13 0.48 0.23 0.00

0.80 0.0033 0.0002 2.44 1.71 0.35 0.26 0.00

0.90 0.0035 0.0002 3.44 1.01 0.00 0.21 0.10

Swedish Two-county

0.70 0.0023 0.0008 2.99 0.98 0.42 0.10 0.02

0.80 0.0022 0.0007 2.94 1.47 0.33 0.19 0.03

0.90 0.0022 0.0006 1.00 1.29 0.56 0.20 0.02

aEstimation uses �0 ¼ 2 (CNBSS-I) or �0 ¼ 4 (HIP, CNBSS-II, and Swedish Two-county) years.
bP-value for likelihood ratio test that  ¼ 0.
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Figure 3. Sensitivity analyses: parameter estimates to assumed test sensitivity and number of years of onset before the first

screening exam. (a) HIP (b) CNBSS-I (c) CNBSS-II (d) Swedish Two-county.
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sensitivity � and the latent onset time origin �0, with higher � settings leading to generally lower estimates of the
indolent fraction and the 10-year setting for �0 leading to an indolent fraction estimate that converged to 0%
under all settings for sensitivity in CNBSS-I and under all but � ¼ 0:70 in CNBSS-II. As noted above, a higher
setting for � or �0 enables the likelihood to explain the observed screen-detected prevalence without having to
account for a high fraction of indolent cancers.

2.7 Results from the Swedish Two-County Trial

For test sensitivity 0.70 or 0.80, the estimated mean sojourn time for progressive cancers (2.9–3.0 years) is between
corresponding estimates from the CNBSS-I and CNBSS-II (Table 3). For test sensitivity 0.90, the estimated mean
sojourn time converged to the lower boundary (1.0) allowed in the estimation procedure. The estimated indolent
fraction varies from 48% if test sensitivity is 0.70 to 0% if test sensitivity is 0.90.

Our sensitivity analysis shows similar dependence of estimates of l and  on the test sensitivity � and the latent
onset time origin �0 (Figure 3), though all estimates are more precise than those from the other trials due to the
larger number of women in this trial.

3 Discussion

Overdiagnosis is the primary potential harm of cancer screening, but uncertainty about the frequency of
overdiagnosis in breast cancer screening persists. To date there is no consensus regarding how best to estimate
overdiagnosis, and different approaches yield varying results. In practice, overdiagnosed breast cancer cases may
be comprised of a mixture of (a) women with indolent breast cancer whose disease does not progress beyond the
preclinical state and (b) women whose disease would progress in the absence of other-cause death but who die
before the disease becomes clinically apparent. Our modeling approach yields estimates of first type, expressed as
the indolent fraction among women with preclinical onset. This is a necessary precursor to estimate the total
frequency of overdiagnosis.

Prior studies that estimate the natural history of breast cancer from screening data have generally not
acknowledged the potential mixture nature of breast cancers. This weakness has been cited in critiques of
modeling studies and lead time estimation as precursor to estimating overdiagnosis.9 This article extends an
established statistical modeling approach to accommodate a mixture of sojourn times with an unknown
fraction of indolent breast cancers within a stable disease model.4 The approach inherits the simplifications of
the most commonly used framework in the literature on estimation of natural history for screening trial data.
Results provide insights regarding the limits of what can be learned about mixture natural histories from
commonly used models for screening trial data and have implications for more complex models involving
mixtures, which may be subject to even greater identifiability challenges.

Strictly speaking, the indolent fraction reflects a lower bound on the risk of overdiagnosis among women
with preclinical cancer. Estimating the risk of overdiagnosis requires incorporating the risk of mortality from
other causes for women with progressive cancers using long-term follow-up data.29 We note that screen-detected
women in these trials were young and relatively healthy, and their mortality due to competing risks given a sojourn
time for progressive cancers with mean 2–3 years was unlikely. It is technically straightforward to add a post-
estimation step to incorporate the competing risk when screened subjects are older or the mean progressive sojourn
time is longer.

Our simulation results indicate that the mixture modeling approach is most likely to provide reliable
results when the mean sojourn time among progressive cancers is short and the indolent fraction is small to
moderate. Further, accuracy is likely to be improved if the inter-screening interval is wide enough to allow for
adequate numbers of interval cancers since these are the cancers that are more informative about the sojourn time.
However, screening intervals that are too wide may result in a net loss of information in the grouped data setting
considered here.

When assuming test sensitivity is 80%, our estimates of the indolent fractions for HIP and CNBSS-I are 8%
and 2%, respectively, which are close to the estimated overdiagnosis rates of 1–5% for two Swedish breast
screening trials,12 but our estimates for CNBSS-II and the Swedish Two-county Trial were considerably higher
(35% and 33%, respectively). In the absence of age-specific data, the estimators of the mean sojourn time and
indolent fraction imply an average over the given age group for each trial. Further work is needed to determine the
reasons for this heterogeneity in results, which may be due to differences in the screened populations or to clinical
practices affecting the sojourn time distribution.
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As shown in our simulation study and in the trial results, the model estimates of the indolent fraction tend to be
subject to a high degree of uncertainty. In addition, the assumed sensitivity of the screening exam significantly
impacts results. If the test sensitivity is too low, the model compensates with a surplus of indolent cancers. In other
words, to fit the observed number of screen-detected preclinical cancers, the model tends to overestimate the
indolent fraction. That the reliability of our estimates is conditional on a reasonable assessment of the test
sensitivity is a key limitation of the analysis. However, analytic methods that aim to extract information about
mixtures of natural histories from prospective screening data must inevitably constrain the estimation procedure to
avoid a non-identifiability problem, which occurs when different sets of parameters corresponding to a specified
natural history model are equally consistent with an observed dataset. We chose to fix test sensitivity and
considered values for this parameter within a range informed by the results of prior studies.4,5,19 We assumed
similar test sensitivities for progressive and indolent cancers since disease-type-specific test sensitivities are not
identifiable from grouped screening trial data. The same problem is likely to manifest in more complex models of
mixture natural histories, such as models of in-situ and invasive breast cancers with non-progressive potential. If
the difference in test sensitivity between indolent and progressive tumors was known, then the model could be
adapted in a straightforward manner to allow for differential test sensitivity while still retaining a single sensitivity
parameter. However, there are no existing estimates of how test sensitivities might differ for progressive versus
indolent breast cancers. Some studies have suggested that test sensitivity might differ for in-situ and invasive breast
cancers,30,31 but the definition of sensitivity in those studies (screen-detected cancers divided by screen-detected
plus interval cancers) is different from the definition of sensitivity in our study (screen-detected cancers divided by
latent cancers). Moreover, even though in-situ tumors are more likely to be indolent than invasive tumors, the
categorization of tumors as in-situ versus invasive is not the same as indolent versus progressive.

In conclusion, this work shows that, in principle, the methods originally developed by Zelen32 and Shen and
Zelen4 may be extended to account for a mixture of indolent and progressive cancers. However, the results will
depend critically on specifications for test sensitivity and the interval prior to the start of the trial during which
latent cancers among trial participants could plausibly have developed. Consequently, reliability of the extended
method will rest on being able to identify defensible values for these inputs. We note that estimation of the indolent
fraction via the mixture model is only a precursor to estimating overdiagnosis frequencies, which will depend on
the time by which diagnosis is advanced by the screening protocol and on the risk of other-cause mortality.
Further research is needed to investigate whether more precise estimation of the indolent fraction may be
possible using individual-level data, including age-specific screening histories and diagnoses from a prospective
screening program.
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