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It is generally accepted that some screen-detected breast cancers are overdiagnosed and would not progress to
symptomatic cancer if left untreated. However, precise estimates of the fraction of nonprogressive cancers remain
elusive. In recognition of the weaknesses of overdiagnosis estimation methods based on excess incidence, there
is a need for model-based approaches that accommodate nonprogressive lesions. Here, we present an in-depth
analysis of a generalizedmodel of breast cancer natural history that allows for amixture of progressive and indolent
lesions. We provide a formal proof of global structural identifiability of the model and use simulation to identify con-
ditions that allow for parameter estimates that are sufficiently precise and practically actionable. We show that clini-
cal follow-up after the last screening can play a critical role in ensuring adequately precise identification of the
fraction of indolent cancers in a stop-screen trial design, and we demonstrate that model misspecification can lead
to substantially biased estimates of mean sojourn time. Finally, we illustrate our findings using the example of
Canadian National Breast Screening Study 2 (1980–1985) and show that the fraction of indolent cancers is not pre-
cisely identifiable. Our findings provide the foundation for extended models that account for both in situ and inva-
sive lesions.

breast neoplasms; identifiability; mammography; medical overuse; model-based inference; natural history;
stochastic modeling

Abbreviations: API, adequately precise identification; CNBSS-2, Canadian National Breast Screening Study 2; MLE, maximum
likelihood estimate; MST, mean sojourn time; PCI, profile confidence interval.

The problemof overdiagnosis associatedwith cancer screening
has received much attention in the clinical literature and news
media.Overdiagnosis occurswhen a screening test detects a cancer
that would never have surfaced symptomatically in the absence
of screening. Treatment of an overdiagnosed lesion cannot help
the patient; to the contrary, it can cause unnecessary harm in the
form of treatment-associated complications and side effects. Be-
causemost newly diagnosed cancers are treated, it is rarely possi-
ble to directly observewhether a cancer detected by screening has
been overdiagnosed or not. In the absence of direct empirical
evidence, disease-specific overdiagnosis rates are estimated using
statistical methods (1, 2).

A common estimation method approximates the frequency
of overdiagnosis via the excess incidence of disease in screened
populations as compared with unscreened populations (3–7).

However, this approach can yield biased estimates even in the
setting of randomized screening trials (8, 9). A second method
uses mathematical modeling to leverage the close link between
overdiagnosis and disease natural history (10–12). Since over-
diagnosis occurs when the period of disease latency, or sojourn
time, of a screen-detected case extends beyond the date of other-
cause death, the frequency of overdiagnosis can be derived on
the basis of an estimate of disease natural history (13).

The estimation of disease natural history in cancer and other
chronic diseases has a long history in the statistical literature
(13–15).With some exceptions (16–18), theseworks have primar-
ily focused on estimating sojourn times based on a progressive
diseasemodel—that is, under the assumption that asymptomatic,
screen-detectable lesions will become symptomatic after a finite
amountof time.For example, in the caseofbreast cancer, progressive
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model fits based on multiple cancer screening trials indicate
a consensus median sojourn time of 2–4 years (8, 19).

As our understanding of cancer progression evolves, the pos-
sibility that some tumors may be nonprogressive or indolent is
becoming more apparent (20). In a recent commentary, Baker
et al. (1) critiqued the existing literature on natural history esti-
mation because it does not accommodate nonprogressive natural
histories. Accommodating a positive fraction of indolent tumors
requires modeling a natural history that is a mixture of progres-
sive and indolent disease, with nonprogressive tumors having
infinite sojourn times. Valid estimation of natural history param-
eters—in this case, the fraction of indolent cases and the distribu-
tion of sojourn time among progressive cases—requires that the
estimation problem be statistically identifiable from the avail-
able data. Indeed, identifiability is a key considerationwhen link-
ing mechanistic models with data (21, 22); it addresses the
important question of whether parameters can be uniquely esti-
mated from a given model and data. We distinguish 2 categories
of identifiability: Structural identifiability considers a best-case
scenario of noise-free, continuously measured data, while practi-
cal identifiability is concerned with more realistic scenarios that
bear the usual features of real-world data, such as measurement
error and a limited number of sample times. Identifiability analy-
sis evaluates which parameters can or cannot be inferred from a
given model and data, and is thus a critical first step in every esti-
mation process.

Here, we investigate the identifiability of a mixture model
of disease progression that explicitly accounts for a nonpro-
gressive fraction of screen-detectable tumors. This is a critical
step in determining whether the modeling approachmay provide
a valid alternative to excess incidence in estimating overdiagnosis.
We provide a detailed analysis of the mixture model’s validity in
making inferences about natural history and, by extension, of
overdiagnosis in the setting where grouped data on screen and
interval diagnoses are available from a randomized screening
trial. We complement analytical results with simulation stud-
ies, and we illustrate our methods using data from Canadian
National Breast Screening Study 2 (CNBSS-2) (23).

METHODS

Model specification

Disease progression. Cancer progression was modeled on
the basis of a mixture model with 3 disease states (Figure 1): a
cancer-free or susceptible state (S), a preclinical state with asymp-
tomatic but screen-detectable disease (P), and a clinical state with
symptomatic disease (C). The transition from S to Pwas assumed
to be exponentially distributed with ratew. Amixture model was
used to describe the transition from P toC, accounting for a frac-
tionψ of preclinical tumors that do not progress to symptomatic
disease. The transition time for the remaining, progressive pre-
clinical tumors was assumed to be exponentially distributed with
rate λ. This specification reduces to the specification of Shen and
Zelen (15, 19) forψ = 0.

Screening program. We focused on a stop-screen trial
design for a cohort of N asymptomatic trial participants who
received J+ 1 screens at consecutive times …t t t, , , J0 1 and were
followed for clinical incidence until time +tJ 1. The majority of
breast cancer screening trials and the Prostate, Lung, Colorectal,

and Ovarian Cancer Screening Trial (24) have followed a stop-
screen design. Calendar time was chosen to reflect participant
age so that age at first screening was t0. In addition to incidence
of screen-detected tumors, we kept track of tumors that were
clinically diagnosed between consecutive screenings, referred to
as interval cancers. The screening sensitivity β, defined as the
probability of detecting a lesion given that the individual was in
state P, was assumed to be equal for indolent and progressive
lesions. The complete set of parameters was denoted by
θ = (ψ λ β)w, , , .

Estimation procedures

To estimate the model parameters θ based on simulated or
actual trial data, we usedmaximum likelihood estimation. Follow-
ing previous work (15, 19), we used an inference scheme based
on grouped trial data which summarizes each of the screening
roundswith ( )n s r, ,j j j , where nj is the number of subjects enter-
ing the jth screening round, sj is the number of screen-detected
cases at time tj, and rj is the number of clinically detected interval
cases in time interval [ ]+t t,j j 1 . The full derivation and final
expression of the likelihood are given in Web Appendix 1
(available at https://academic.oup.com/aje). All computations
were performed using R statistical software (R Foundation for
Statistical Computing, Vienna, Austria).

Confidence intervals and profile likelihoods

To construct confidence intervals for the parameter estimates,
we used a profile likelihood approach (25), as follows. First,
denote by(θ) the likelihood function of the model and by θ∗

themaximum likelihood estimates (MLEs) of themodel param-
eters θ. Then define the profile likelihood of parameter i as a
function  ↦ ˆ ( ) ≡ (θ |θ = )−x x xi i i , which maximizes (θ)
over all parameters but the ith parameter while keeping the latter
fixed at x. Exploiting the asymptotic χ2 distribution of the like-
lihood ratio statistic, define the 95% profile confidence inter-
val for θi, at significance level α, as

 { (θ ) − ˆ ( ) < Δ }∗
αx x: log log /2 ,i

whereΔα is the ( − α)1 th percentile of the χ2 (df) distribution
with df degrees of freedom (22). Pointwise confidence intervals
for θi were obtained by setting df equal to 1. The likelihood-based

w
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Susceptible Preclinical Disease Clinical Disease

C
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Progressive

Figure 1. Mixture model of the natural history of breast cancer.
Disease-free, susceptible (S) individuals are at risk of developing pre-
clinical disease (P), which is either indolent nonprogressive with proba-
bility ψ or progressive otherwise (dotted arrows). Progressive lesions
progress to clinically detectable disease (C) at rate λ.
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95% profile confidence interval is best visualized on the basis
of the relative negative log-likelihood scale (Figure 2). Indeed,
the 95%profile confidence interval for parameterθi corresponds
to the neighborhood of its MLE where the relative negative
log-likelihood stays below theΔα /2 threshold (Figure 2, dotted
lines). The relative negative log-likelihood and confidence in-
tervals were computed on the basis of the algorithm outlined by
Eisenberg and Hayashi (26).

Structural and practical identifiability

Structural identifiability addresses the question of parameter
identifiability in a hypothetical scenario of perfectly measured
and noise-free data. Assuming such an ideal setting, structural
identifiability is achieved if all model parameters can be uniquely
recovered from the data. To evaluate the structural properties
of the mixture models (21), we derived the backward Kolmo-
gorov equations and employed a differential algebra approach to
evaluate model identifiability and determine identifiable param-
eter combinations (27, 28). (SeeWebAppendix 2 for details.)

Structural identifiability is a necessary condition for practical
identifiability, defined as parameter identifiability in real-world
scenarios with imperfect and noisy data. In principle, a structurally
identifiable but practically nonidentifiable model can be rendered
practically identifiable by collecting suitable additional data.

For a formal definition, we say that a parameter θi is practically
nonidentifiable if the profile likelihooddoes not exhibit aminimum
or it admits a minimum at θ̂i but its 95% profile confidence
interval is infinitely extended to either side or both sides of θ̂i
(21, 22). In other words, a parameter is practically nonidenti-
fiable if the relative negative log-likelihood stays below the
Δα /2 threshold on either side of the MLE (Figure 2).

Adequately precise identification

In theory, practical (and hence structural) identifiability of a
model ensures that point estimates and confidence intervals can
be properly estimated from the available data. In practice, how-
ever, if the confidence regions are too large, the resulting infor-
mation may not be actionable for practitioners. For example, if
themodel-based estimate of the time to progression frompreclin-
ical disease to clinical disease is 10 years with a 95% profile con-
fidence interval of (0.1, 100.0) years, the practitioner is unlikely
to use the information for clinical or public health recommenda-
tions. For this reason, we introduce a notion of practical utility
for parameter estimates from a structurally identifiable model,
namely that of adequately precise identification (API). We say
that a model parameter satisfies API if its 95% profile confidence
interval is contained within a meaningful range of theMLE. Fur-
thermore, we say that the model satisfies joint API if all model
parameters satisfy API. Here, we define a meaningful range to be
[ ( θ − ) ( θ + )]max 0, 0.2 , min 1, 0.2i i for parameters contained
in [ ]0, 1 (e.g., ψ, β) and [ θ ]θ , 3 i3

i for parameters contained in
[ ∞)0, (e.g., w, λ). Clearly, these choices depend on the appli-
cation considered and the degree of precision needed for practical
purposes.

Simulation study

We simulated data from a stop-screen trial with 50,000 trial
subjects who received 5 annual screenings between the ages of
50 and 54 years and were followed for clinical cancer incidence
for a specified number of years. The rate of preclinical disease
onset w was set to 0.0025, and the screening sensitivity β was
assumed to be 80%. We assumed no competing mortality or
loss to follow-up. To characterize estimator properties, we per-
formed Monte Carlo simulations (n = 1,000) to estimate the
bias and standard error of the MLEs. We used this framework
to conduct a systematic evaluation of API. We varied the dura-
tion of follow-up after the last screening and the key natural his-
tory parameters that drive overdiagnosis, namely the fraction of
indolent cancers (ψ) and the rate of progression to invasive dis-
ease (λ). For each pair ofψ and λ, we calculated the fraction of
simulation runs yielding API and estimated the corresponding
probability of rejecting the null hypothesis of a purely progres-
sive disease, ψ =H : 00 . Finally, we conducted Monte Carlo
simulations (n = 1,000) to determine the bias resulting from fit-
ting a purely progressive model to the data generated by the
mixture model.

CNBSS-2 data

To illustrate our methods, we analyzed data from CNBSS-2
(1980–1985). CNBSS-2 was implemented as an individually
randomized trial with the goal of evaluating the reduction in
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Figure 2. Practical identifiability of a mixture model of breast cancer
disease progression. A stop-screen trial with 50,000 subjects was
simulated with annual screening at ages 50–54 years, with follow-up
to age 60 years. The outcomes were grouped by screening round to
estimate the natural history parameters and screening sensitivity. The
parameter values used to generate the synthetic data are indicated by
vertical dashed lines, and the point estimates of the 4 parameters are
close to the minima of the negative (profile) log-likelihoods. A) ψ; B) λ;
C) w; D) β. For each parameter, the intersection of the profile likeli-
hood with the horizontal dotted line defines the 95%profile confidence
interval.
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mortality produced by combined annual mammography screen-
ing and clinical breast examination over clinical breast examina-
tion alone (23). CNBSS-2 enrolled women aged 50–59 years,
and 19,711 women randomized to the screening arm underwent
the first screening examination (see Web Table 1 for the grouped
data).Modelfittingwas performed as described above in the “Esti-
mation procedures” section, subject to the following assump-
tions: 1) Because of a lack of granular age data, we assumed
average age at enrollment to be 55 years; 2) the incidence rate
w of preclinical disease was assumed to be zero prior to age
Δ0 years, where Δ0 was set to 45 years for the baseline sce-
nario and was varied from 35 years to 50 years for sensitivity
analyses; and 3) the parameter β was assumed to capture the
combined sensitivity of mammography and clinical breast
examination. Finally, the different models’ goodness of fit to the
trial data was assessed on the basis of a χ2 test.

RESULTS

Structural identifiability

Under the assumption that the incidence rate of preclinical
disease is lower than the rate of progression from preclinical
disease to clinical disease ( < λ)w , we provided a rigorous
proof of the structural identifiability of the mixture model
(see theorem 2.2 inWeb Appendix 2). We showed that a single
screening round in conjunction with clinical follow-up over an
arbitrary finite time interval is sufficient to ensure global struc-
tural identifiability of the mixture model. Finally, we note that

< λw is invariably satisfied in breast cancer natural history.

Practical identifiability

Next, we focused on practical identifiability in scenarios with
limited data via simulation studies. Setting the fraction of indo-
lent preclinical tumors to 20% and themean sojourn time (MST)
to 2.5 years, we found all 4 model parameters to be practically
identifiable with finite limits of the 95% profile confidence in-
tervals (Figure 2). In particular, because the 95% profile confi-
dence interval for the fraction of indolent cancers did not
containψ = 0, the likelihood ratio test correctly indicated that
the fraction of indolent cancers was positive. Results ofMonte
Carlo simulations carried out to estimate the bias and standard

error of the MLEs (Table 1) showed that estimators for all
parameters were unbiased with small standard errors.

Clinical utility of estimates

On the basis of a stop-screen trial design with 50,000 partici-
pants and 1 year of follow-up after the last screening, we found
that a high probability of API was only achieved over a limited
portion of the (ψ λ), plane (Figure 3, top left). Increasing the
duration of follow-up from 1 year to 6 years substantially en-
larged the portion of the (ψ λ), plane with a high probability of
API (Figure 3, top right). In general, API of the estimates was
reduced when the fraction of indolent cancers was large and when
the progression ratewas either very small or very large.

For the same trial scenarios, we evaluated the corresponding
probability of rejecting the null hypothesis of a purely progres-
sive disease, ψ =H : 00 , across the (ψ λ), plane (Figure 3, bot-
tom row). The rate of type I errors—which corresponds to
rejecting H0 when ψ = 0—was negligible for all scenarios
considered. With the exception of very small ψ and λ values,
the rate of type II errors—which corresponds to the probability
of not rejectingH0 whenψ > 0—was negligible; equivalently,
the statistical power of the test was high (over 90%). Finally,
systematic analysis of estimator bias and standard error for the
above trial settings (Web Figures 1 and 2) showed that loss of
API occurred primarily inψ and λ, when either or both of these
parameters was particularly small or large. In contrast, the esti-
mators of w and β exhibited minimal bias and standard error
across the examined domain.

The role of follow-up

The above results suggest that the duration of follow-up after
the last screening can have a substantial impact on the probability
of API (Figure 3). For further study of this aspect, we examined
API for clinical follow-up ranging from 1 year to 10 years, both for
a 6-monthMST (Figure 4A) and for a 4-yearMST (Figure 4B).
Longer follow-up intervals invariably increased the probability
of the model’s satisfying joint API. The impact of follow-up on
API was most pronounced for larger values ofψ. A closer look
at the estimators of the different parameters revealed that the low
API for short follow-upwas primarily driven by shallow profile
likelihoods for the progression rate λ (Figure 5). This indicated
that the 1-year intervals between screenings were insufficient to

Table 1. Results of Monte Carlo Simulations Carried Out to Estimate the Bias and Standard Error of theMaximum Likelihood Estimators of the
Model Parameters in a MixtureModel of Breast Cancer Disease Progressiona

Parameter Type

MaximumLikelihood Estimator

Type II ErrorbFraction of Indolent
Tumors

Rate of Progression
to Clinical Disease

Rate of Onset of
Preclinical Cancer Screening Sensitivity

ψ SE(ψ̂) λ SE( )λ̂ w wSE( )ˆ β SE( )β̂

Target 0.2000 0.4000 0.0025 0.8000

Estimate 0.2002 0.0270 0.4056 0.0593 0.0025 0.0001 0.8007 0.0231 0.000

Abbreviation: SE, standard error.
a Example target and estimated parameters based on 1,000Monte Carlo simulations.
b Where the null hypothesis,H : = 00 ψ , was not rejected.
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properly inform the tail of the progression time distribution. To
capture the tail behavior, clinical follow-up after the last screening
needed to be longer than the MST. Indeed, API as a function of
clinical follow-upwas found to increase at a higher rate for shorter

sojourn times (Figure 4A) as compared with longer sojourn
times (Figure 4B).

Bias due tomodelmisspecification

Many published estimates of natural history and screening
parameters have been derived on the basis of progressive models
(i.e.,ψ = 0). If the cancer in question is subject to a nonnegligible
fraction of indolent preclinical cases, such model misspecification
may lead to biased parameter estimates. Simulating natural his-
tories with varying fractions of indolent tumors, we found that
fitting a purely progressive model generally leads to substantial
overestimation of both the incidence ratew and the MST among
progressive cases, λ1/ (Figure 6). Overestimation of w results
from the progressive model’s attempt to fit an increased preva-
lence of preclinical cancers at the first screening (because of the
presence of indolent tumors not accounted for by the model).
Overestimation of the sojourn time in turn compensates for the
inflated estimate of w when fitting the observed incidence of
interval cases. Finally, all parameters exhibited minimal bias and
standard error when the mixture model was applied to a purely
progressive disease (Web Figures 1 and 2).

Parameter estimates for CNBSS-2

The mixture model yielded a good fit to the grouped data
from the CNBSS-2 trial (goodness of fit: P = 0.8). Neither
the fraction of indolent cancers nor the screening sensitivity
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Figure 3. Adequately precise identification (API) and type I/II errors in a simulation study of stop-screen trials. Model performance over a range of
values for the indolent fraction (ψ) and the progression rate of progressive cancers (λ) is visualized as (top row) percentages of 100 simulations
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age 60 years (right column), assuming a constant risk of onset of preclinical cancer ofw = 0.0025 per year and a sensitivity of screening to detect
preclinical cancer of = 80%β .
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Figure 4. Adequately precise identification (API) as a function of
follow-up in a simulation study of stop-screen trials. The graph shows
percentages of simulations (n = 100) achieving joint API for all 4
model parameters (ψ λ β)w, , , in a stop-screen trial with 50,000
women screened annually at ages 50–54 years, by duration of
follow-up after the last screening. Mean sojourn times were 6 months
(A) and 4 years (B), respectively. Lines connect evaluations under
ψ set equal to 20% (dark circles), 40% (medium circles), and 60%
(light circles), assuming a constant rate of onset of preclinical can-
cer of w = 0.0025 per year and a sensitivity of screening to detect
preclinical cancer of = 80%β .
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provided API (Figure 7). With estimates of 0.0% (95% pro-
file confidence interval (PCI): 0.0, 56.6) and 80.6% (95%
PCI: 42.4, 100.0) for ψ and β, respectively, both had wide
95% profile confidence intervals. The imprecise estimate for ψ
shows that the grouped data are not sufficiently rich to deter-
mine the fraction of indolent cancers. This lack of identifiability
is further illustrated by examining the goodness of fit when con-
straining the model to a range of different positive fractionsψ of
indolent cancers (Web Table 2). Indeed, even increasingψ up to
40% does not change the goodness of fit substantially (P = 0.6).

With an estimate of 3.3 years (95% PCI: 1.4, 10.2), the
MST provided borderline API, while the preclinical onset
rate w was clearly API, with an estimate of 3.1 × 10−3 (95%
PCI: 2.3 × 10−3, 3.6 × 10−3) per year. These estimates are
consistent with values obtained by Shen and Zelen (15), who
estimated a screening sensitivity of 78% for CNBSS-2 and an
MST of 3.8 years under a progressive disease model. The slight
discrepancy between their estimates and ours may be attributed
to their assumption of a uniform rather than an exponential dis-
tribution for preclinical onset, in addition to the absence of an
indolent fraction in their model.

Finally, we performed a sensitivity analysis for the above
estimates with respect to the earliest average age of onset of
preclinical disease (Web Table 3). Varying the latter between
35 years and 50 years led to slight variations in numerical
parameter estimates but the same qualitative conclusions.
Independent of the first average age of onset, the incidence of
disease onset and the screening sensitivity continued to provide
API; P values for the corresponding goodness of fit ranged from
0.3 to 1 for ages of onset of 35 years and 50 years, respectively.

DISCUSSION

We have presented an in-depth exploration of identifiability
issues that arise when inferring disease natural histories from
cancer screening studies. Our investigation wasmotivated by the
problem of quantifying overdiagnosis in cancer and the recognition
of weaknesses of methods based on excess incidence. On the
basis of simulations and application to real-world data, we
showed that adequately precise parameter estimation is not
guaranteed in practice, even for a relatively simple model
structure. Because more complex model extensions will naturally
be less identifiable, our findings provide an important foundation
for researchers inferring cancer natural histories using complex
model designs.

By combining analytical and numerical techniques, we derived
insights that have direct implications for model-based estimation
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for adequately precise identification (API). With 4 and 6 years of
follow-up (gray and light gray lines), λ clearly provides API. The re-
maining parameters β andw provide API under all follow-up scenarios
considered (not shown). Simulation parameters are as follows: n =
50,000 trial participants, = 2λ , w = 0.0025, and = 80%β . Vertical
dashed lines correspond to the true parameter values. The intersec-
tion of the relative negative log-likelihood with the horizontal dotted
line indicates the 95% profile confidence interval.
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of overdiagnosis rates from cancer screening trials. First, we
formally proved that the mixture model is structurally identi-
fiable. More precisely, given a sufficiently large number of trial
participants, the model parameters can in theory be uniquely
estimated from a single screening round with clinical follow-up.
On the basis of simulation studies, we then demonstrated that in
practice, identifiability and API of the model critically depend on
both the underlying disease dynamics and the trial protocol,
including the number of screenings and the duration of clinical
follow-up after the last screening. In a mixture setting, natural his-
tories with relatively short progressive sojourn times are more
likely to be adequately identifiable than natural histories with long
progressive sojourn times. To properly infer the tail behavior of
the sojourn time distribution, the trial design needs to provide
ample opportunity for interval case ascertainment and post-
screening follow-up. Our simulation studies further suggest that
increased follow-up after the last screening can compensate for a
smaller number of screening rounds. This is a striking insight
given that follow-up for clinical incidence is considerably less
resource-intensive than recruiting trial participants for thousands
of additional screenings.

Another key result with implications for the field concerns
model misspecification. Natural history modeling has a long
history in screening trials, but many published studies are
based on the assumption that the disease is purely progres-
sive. We found that for a mixture of progressive and indolent

preclinical lesions, fitting a purely progressive disease model
can lead to systematically biased estimates of MST, disease
incidence rate, and screening sensitivity. These findings are
aligned with the recent commentary emphasizing the need
for mixture models when studying cancer overdiagnosis (1).

By definition, overdiagnosis occurs in patients who have
nonprogressive lesions or who die from other causes before
progression to a clinical state. Therefore, viable model-based
estimation of overdiagnosis requires that the fraction of indolent
tumors and the sojourn time distribution of progressive lesions
be estimated with sufficient precision. Our findings suggest
caution when applying mixture models to real data from
screening studies for the purpose of overdiagnosis estimation.
Awareness of the identifiability issue is critical, and we recom-
mend that analyses be accompanied by a clear statement of all
modeling assumptions and the presentation of profile likeli-
hoods or other diagnostics as evidence for API (Figure 2).

In breast cancer, most published estimates of overdiagnosis
bypass natural historymodeling by directly estimating the excess
incidence of cancers in screened cohorts compared with un-
screened cohorts (3–6). Because the nonparametric excess
incidence approach can lead to biased estimates of overdiagnosis
(9), model-based approaches provide an attractive alternative, as
long as the trial data are sufficiently rich to ensure API. For
example, applying the mixture model to the CNBSS-2 data re-
vealed that the fraction of indolent disease was not adequately
precisely identifiable, indicating that more data were needed to
draw reliable conclusions about the natural history of dis-
ease progression and the extent of overdiagnosis.

Identifiability poses an even bigger problem for more com-
plex natural histories, such as the combination of in-situ and
invasive cancers (12, 29). For complex models that remain ana-
lytically tractable, structural identifiability analyses such as those
described here may be conducted, but they may be technically
challenging. To the extent that a likelihood can be derived, practi-
cal identifiability analyses based on profile likelihoods are advised.
For likelihood-free models (e.g., microsimulation models),
practical identifiability can be explored using Bayesian methods
(30). Furthermore, the analysis of constrained versions may pro-
vide guidance for the analysis of the full models. In the case of
in-situ breast cancer, such simplifications could include specify-
ing that all tumors go through the in-situ stage or assuming a
known screening sensitivity (17). Irrespective of model com-
plexity, identifiability should be verified or modifications to
achieve identifiability should be made before making any infer-
ences from the data.

Limitations of our approach include the fairly stringent
parametric assumptions of exponential distributions for disease
onset and progression. The latter can, in principle, be replaced
with more flexible distributions as long as adequately precise
verification can still be assured. Another limitation is the use of
grouped trial data instead of individual screening histories. The
advantage of this data configuration, which has previously been
used for inference based on progressive models (15, 31), is that it
is often readily available from published studies. While the
resulting likelihood is relatively easy to construct, it assumes
that persons who participate in the kth round of screening
have participated in all prior rounds. This can be addressed
by using an individual-level likelihood (32); however, the
latter requires access to individual-level data. Finally, we
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Figure 7. Profile likelihood for the parameters of a mixture model in
an analysis of grouped data from Canadian National Breast Screen-
ing Study 2 (CNBSS-2), 1980–1985. The graph shows the relative
negative log-likelihoods for the natural history parametersψ (A), λ (B),
w (C), and β (D) based on fitting of the mixture model to CNBSS-2
data (see also Web Table 1). Vertical dashed lines correspond to
maximum likelihood estimates. The intersection of the relative nega-
tive log-likelihood with the horizontal dotted line indicates the 95%
profile confidence interval.
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assumed a single screening sensitivity for indolent and pro-
gressive lesions. It is possible that this parameter depends on
lesion type, and alternative parameterizations may be used
(17, 33).

In conclusion, this work adds materially to the literature on
the use of model-based approaches for estimating the natural
history of disease progression as a precursor to quantifying
overdiagnosis. Our findings confirm the potential for these
methods to provide valuable insights into natural history
and overdiagnosis in cancer screening programs. Most impor-
tantly, our approach highlights what types of data are needed
for obtaining clinically relevant parameter estimates and pro-
vides insights into sources of bias under model misspecifica-
tion. We conclude that application of a mixture natural history
model to screening data should be accompanied by a thorough
investigation of practical identifiability and an assurance that
the model parameters can indeed be estimated from the avail-
able data.
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Web Appendix 1

In this section, we derive the likelihood function used for maximum likelihood estimation of the

model parameters. Inference is performed in the stop-screen trial setting whereby the participants

undergo a set number of screens and then are followed for clinical incidence after the last screen.

Model development and notation

Consider a cohort of individuals who undergo J + 1 screens at times t0 < . . . < tJ , and let tJ+1

denote the follow-up time after the last exam. In this setting, we can identify calendar time t

with patient age. For the j-th screening round, we let nj be the number of individuals undergoing

the screen, sj the number of screen-detected cancers, and rj the number of clinically detected

interval cancers diagnosed in the interval (tj, tj+1). Thus the summary data associated with the

j-th interval are (nj, sj, rj). Note that for the last screening round, we further dissect the follow

up interval into L equally sized subintervals and denote the number of clinically detected cases in

the l-th subinterval by rlJ , i.e.,
∑L

l=1 r
l
J = rJ . The reason for binning the data is that it simplifies

computational aspects while providing more information than would be conveyed by the total

number of follow up cases.

Organs are only at risk of preclinical disease after their developmental is completed, e.g., the risk

of preclinical breast cancer is negligible before mammogenesis. Therefore, we assume that the rate

of onset of preclinical disease becomes positive after age t∗, where 0 ≤ t∗ < t0. We denote by

w > 0 the (constant) hazard rate for onset of preclinical disease after t∗, and denote by T the

(random) age of onset of preclinical disease. Of note, the probability density function (pdf) of T

is

P(T ∈ [t, t+ dt]) =

0, t ∈ [0, t∗],

we−w(t−t∗)dt, t > t∗.
(1)

To allow for a fraction of individuals with indolent cancers that will never progress to clinical

disease, we consider a mixture distribution of sojourn times U from onset of preclinical disease to

clinical disease,

P(U > t) = ψ + (1− ψ)P(U > t|U <∞), (2)

where ψ is the fraction of indolent cancers with infinite progression time. We assume that the

sojourn time among progressive cases is exponentially distributed, i.e. (U |U < ∞) ∼ Exp(λ),

with rate parameter λ > 0. We denote by Q and q the survival function and probability density

1



function (pdf) of U , and by Q1 and q1 the survival function and pdf of U conditioned on progres-

sion, U |U < ∞. Finally, let β be the sensitivity of the screening exam, assumed to be equal for

progressive and indolent preclinical disease.

In summary, the four model parameters are θ := (w,ψ, λ, β), and the data used for inference of

θ is grouped as (nj, sj, rj). To prepare the likelihood function, we first need to calculate two key

probabilities, namely the probability Dj(θ) of screen-detected preclinical disease at screen j, and

the probability Ij(θ) of interval detected clinical cancer between screens j and j + 1. The latter

will be treated in two separate sections for j = 0, 1, . . . , J − 1 and j = J , respectively.

Dj(θ): screen-detected preclinical disease at screen tj

We start with D0(θ), the probability to find preclinical disease at the baseline screen. We note

that for this to happen, we need (i) T ∈ [0, t0], (ii) T+U > t0, and (iii) and a true-positive baseline

screen. More precisely,

D0(θ) = β P(T < t0, T + U > t0) = β

∫ ∞
0

P(T < t0, T + U > t0|T = t)P(T = t)dt

=β

∫ t0

t∗
P(U > t0 − t)P(T = t)dt

=β w

∫ t0

t∗
e−w(t−t∗)Q(t0 − t)dt,

(3)

where we recall that Q is the survival function of U . Applying a similar reasoning to subsequent

screens, we easily derive a general expression by summing contributions from all intervals preceding

tj (with the convention that t−1 := t∗)

Dj(θ) = β w

j∑
k=0

(1− β)j−k
∫ tk

tk−1

e−w(s−t∗)Q(tj − s)ds, j = 0, 1, 2, . . . , J (4)

Ij(θ): clinical disease in interval (tj, tj+1)

We first calculate I0(θ), the probability of a clinically detected interval cancer in (t0, t1). There

are two contributions to I0(θ). (i) The first contribution stems from preclinical tumors arising in

[t∗, t0) that go undetected at the first screen and then progress to clinical disease in (t0, t1). Since

the first screen is false-negative with probability 1−β and the lesion is progressive with probability

2



1− ψ, we find the following contribution (recall that q1 is the pdf of U |U <∞),

(1− β)P(T < t0, t0 < T + U < t1) = (1− β)

∫ t0

t∗
P(t0 − t < U < t1 − t)P(T = t)dt

= w (1− β)(1− ψ)

∫ t0

t∗
e−w(t−t∗)

∫ t1−t

t0−t
q1(s)dsdt

= w (1− β)(1− ψ)

∫ t0

t∗
e−w(t−t∗)

∫ t1

t0

q1(s− t)dsdt.

(5)

(ii) The second contribution is from preclinical tumors that appear after t0 and progress before t1,

P(T > t0, U + T < t1) =

∫ t1

t0

P(U < t1 − t)P(T = t)dt

=w (1− ψ)

∫ t1

t0

e−wt
∫ t1−t

0

q1(s)dsdt

=w (1− ψ)

∫ t1

t0

e−w(t−t∗)

∫ t1

t

q1(s− t)dsdt.

(6)

Combining the two contributions (5) and (6) to get

I0(θ) = (1− ψ)w

[
(1− β)

∫ t0

t∗
e−w(t−t∗)

(∫ t1

t0

q1(s− t)ds
)
dt+

∫ t1

t0

e−w(t−t∗)

(∫ t1

t

q1(s− t)ds
)
dt

]
.

(7)

Next, we extend this formula to Ij(θ), for j = 0, 1, . . . J−1, by considering the same contributions

(i) and (ii) as above (the case j = J will be treated separately below). (i) The first contribution

comes from preclinical progressive lesions that arise in the interval (tk−1, tk) for k = 0, . . . , j, are

missed on all subsequent screens at tk, . . . , tj, and then progress to clinical disease in [tj, tj+1],

(1− β)j−k+1 P(tk−1 < T < tk, tj < T + U < tj+1)

= (1− β)j−k+1

∫ tk

tk−1

P(tj − t < U < tj+1 − t)P(T = t)dt

= (1− ψ)(1− β)j−k+1w

∫ tk

tk−1

e−w(t−t∗)

(∫ tj+1

tj

q1(s− t)ds

)
dt.

(8)

(ii) For the second contribution, consider progressive lesions that arise after tj and progress to

clinical before tj+1. Similarly to above calculation for I0, we find that this contribution is given by

(1− ψ)w

∫ tj+1

tj

e−w(t−t∗)

(∫ tj+1

t

q1(s− t)ds
)
dt. (9)

3



Summa summarum, we find for j = 0, 1, . . . , J − 1,

Ij(θ) =(1− ψ)w

j∑
k=0

(1− β)j−k+1

∫ tk

tk−1

e−w(t−t∗)

(∫ tj+1

tj

q1(s− t)ds

)
dt+ . . .

. . . (1− ψ)w

∫ tj+1

tj

e−w(t−t∗)

(∫ tj+1

t

q1(s− t)ds
)
dt.

(10)

I lJ(θ): clinical disease after last screen

After the last screen at age tJ , enrolled individuals are followed for clinical disease until tJ+1. In

keeping with the grouped data approach used for the screening rounds, we dissect the interval

(tJ , tJ+1) into L equally spaced subintervals and calculate the corresponding probabilities I lJ(θ) of

a clinical diagnosis during the l-th follow-up interval. To keep notation at a minimum, we assume

here that tJ+1 − tJ = L, such that each subinterval has unit length (using units of years is thus

convenient). After some algebra, we find

I lJ(θ) =w(1− ψ)
J∑
k=0

(1− β)J−k+1

∫ tk

tk−1

e−w(t−t∗)

∫ tJ+l

tJ+l−1

q1(s− t)dsdt . . .

. . .+ w(1− ψ)

∫ tJ+l

tJ

e−w(t−t∗)

∫ tJ+l

(tJ+l−1)∨t
q1(s− t)dsdt,

(11)

where a ∨ b := max(a, b).

Likelihood

Before we can assemble the above terms into the likelihood function, we have to account for the

fact that only asymptomatic individuals are eligible to enter a new screening round. Because

we treat the screening rounds independently, this means that for each screening round, we have

to condition on not having been diagnosed prior to the screen in question. By Bayes’ rule, the

conditioning corresponds to adjustment of Dj(θ) and Ij(θ) as

Dc
j(θ) := Dj(θ)/ξj(θ), Icj (θ) := Ij(θ)/ξj(θ), j = 0, . . . , J − 1, (12)

where ξj(θ) is the probability that an individual has not yet been diagnosed with preclinical or

clinical disease upon entering the j-th screening round at tj. Similarly, for the last screening round

with clinical follow up we have

Dc
J(θ) := DJ(θ)/ξJ(θ), I l,cJ (θ) := I lJ(θ)/ξJ(θ). (13)

4



Next, we need to calculate the ξj(θ). For the first screening round at t0, we have ξ0(θ) = P(T+U >

t0). After some algebra, we find

ξ0(θ) = P(T + U > t0) = ψ + (1− ψ)

[
e−w(t0−t∗) +

w

λ− w
(
e−w(t0−t∗) − e−λ(t0−t∗)

)]
. (14)

For all subsequent screens, we have the general expression

ξj(θ) = ξ0(θ)−
j−1∑
k=0

(Dk(θ) + Ik(θ)) (15)

At last, we can now assemble the likelihood. From the first J screening rounds, we have trinomial

contributions to the log-likelihood function proportional to

l(i)(θ) ∼
J−1∑
j=0

sj logDc
j(θ) + rj log Icj (θ) + (nj − rj − sj) log(1−Dc

j(θ)− Icj (θ)). (16)

reflecting the three possible events per individual: either a preclinical cancer is screen-detected, an

interval cancer is diagnosed before the subsequent screen, or no cancer (screen-detected or clinical)

is diagnosed before the next screen. For the last screen at tJ , we have to account for the clinical

follow up incidence (see previous section). The corresponding multinomial contribution to the

log-likelihood function is

l(ii)(θ) ∼ sJ logDc
J(θ) +

L∑
l=1

rlJ log I l,cJ +

(
nJ − sJ −

L∑
l=1

rlJ

)
log

[
1−Dc

J(θ)−
L∑
l=1

I l,cJ (θ)

]
. (17)

Finally, the complete log-likelihood is given by

l(θ) = l(i)(θ) + l(ii)(θ). (18)
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Web Appendix 2

In this section, we discuss structural identifiability of the natural history model as shown in the

panel below.

1

2

3 4

Disease-free

Indolent	preclinical	
disease

Progressive	preclinical
disease

Clinical	disease

µI

µP µC

Natural history model. Disease-free (1) individuals develop an indolent preclinical lesion (2) at rate µI , and a
progressive preclinical lesion (3) at rate µP . Once in state (3), the lesion becomes clinically detectable (4) at rate
µC .

Preliminaries

Before we address the specific problem at hand, we introduce the notion of structural identifiability.

We largely follow [1, 2] and refer the reader to these references for a more detailed treatise of the

problem. We start by considering an ordinary differential equation (ODE) model of the typeẋ = f(x, t,p), x(0) = x0,

y = g(x,p),
(19)

where x is a vector of variables, p is a vector of model parameters, and y is a measurable model

output. We start with two definitions.

Definition 0.1 (Structural identifiability). For a model of type (19), an individual parameter

p is globally structurally identifiable if for almost every value p∗ and almost all initial condi-

tions, the equation y(x, t,p∗) = y(x, t,p) implies p = p∗. A parameter p is said to be lo-

cally structurally identifiable if for almost any p∗ and almost all initial conditions, the equation

y(x, t,p∗) = y(x, t,p) implies that p has a finite number of solutions.
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Definition 0.2 (Input-output equation). An input-output equation for an ODE model of type

(19) is a monic polynomial equation in y and its derivatives only. Thereby, the terms are ordered

as y < ẏ < ÿ < . . ., such that the highest derivative with a non-zero coefficient is the leading term

of the polynomial equation.

Our proof of structural identifiability will rest on the following result, see Theorem 4.1 in [Eisen-

berg]

Theorem 0.1. The parameters of a rational function ODE model of type (19) are globally (re-

spectively locally) structurally identifiable if and only if the map c(p) from the parameters to the

coefficients of a set of input-output equations is injective (respectively, the fibers contain finitely

many elements), regardless of how the input-output equations are generated.

To make use of these results we need to reformulate our model accordingly. First, we introduce

two competing progression events from disease-free to indolent disease, and from disease-free to

progressive pre-clinical disease, with rates µI and µP , respectively. Note that the fraction of indo-

lent cancers ψ used in the original model formulation corresponds to the ratio ψ = µI/(µI + µP ).

To use the formalism of Markov branching processes, we introduce the state indicator functions

Yi(t) = 1{patient in state i}(t), where the states i = 1, 2, 3, 4 are defined as in the panel at the begin-

ning of the web appendix.

Next, we cast the evolution of the Markov model in an ODE framework by deriving the backward

Kolmogorov equations. First, we introduce the probability generating functions

Φ1(y1, y2, y3, y4; τ, t) = E
(
y
Y1(t)
1 y

Y2(t)
2 y

Y3(t)
3 y

Y4(t)
4 |Y1(τ) = 1, Y2(τ) = 0, Y3(τ) = 0, Y4(τ) = 0

)
,

and similarly for Φ2, Φ3 and Φ4. The backward Kolmogorov equations for this problem are easily

derived as 

∂Φ1

∂τ
= (µI + µP ) Φ1 − µIΦ2 − µPΦ3

∂Φ2

∂τ
= 0

∂Φ3

∂τ
= −µC (Φ4 − Φ3)

∂Φ4

∂τ
= 0,

(20)

with initial conditions

Φi(y1, y2, y3, y4; t, t) = yi,

where yi is the probability that the patient is in state i at time t = 0. We can now state and prove

the main result.
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Main Result

Theorem 0.2 (Structural identifiability.). Consider the cancer progression model shown at the

beginning of the web appendix and such that µI + µP < µC. We assume a screening sensitivity β

for preclinical lesions, and let 0 ≤ t1 < t2 < ∞. If perfect data is available for a single screen at

time t1 and clinical incidence during the subsequent interval [t1, t2], then the four model parameters

(µI , µP , µC , β) are globally structurally identifiable.

Remark 0.3. Note that the assumption µI + µP ≤ µC is invariably satisfied in cancer screening:

the incidence rate of preclinical disease (progressive or indolent) is much lower than the rate of

progression to invasive disease among progressive cases. Indeed, the former is usually of the order

of 10−4 to 10−3 and the latter is of the order of 10−1 to 100.

Proof of Theorem 0.2. We first derive the input-output equations for screening and clinical inci-

dence, respectively, and then combine them to conclude.

Clinical incidence. We denote by T the time of arrival (possibly infinite) in the clinical disease

compartment. It follows that the survival function S(t) := P(T > t) can be expressed as

S(t) =
∑

(l1,l2,l3,0)

P(Y1(t) = l1, Y2(t) = l2, Y3(t) = l3, Y4(t) = 0|Y1(0) = 1, Yi(0) = 0,∀i > 1) =

=
∑

(l1,l2,l3,l4)

P(Y1(t) = l1, Y2(t) = l2, Y3(t) = l3, Y4(t) = l4|Y1(0) = 1, Yi(0) = 0, ∀i > 1) 1l1 1l2 1l3 0l4

= E
(
1Y1(t) 1Y2(t) 1Y3(t) 0Y4(t)|Y1(0) = 1, Yi(0) = 0, ∀i > 1

)
= Φ1(1, 1, 1, 0; 0, t).

(21)

Therefore, if we set x(s) := Φ1(1, 1, 1, 0; t−s, t), then x(t) = S(t) is the survival function. Similarly,

we define xi(s) := Φi(1, 1, 1, 0; t− s, t) for i = 2, 3, 4. Substituting the latter into (20) we find that

x and x3 satisfy the equationẋ(s) = − (µI + µP )x+ µI + µPx3, x(0) = 1,

ẋ3(s) = −µCx3, x3(0) = 1.
(22)

If the transition rates are constant, we solve the first equation in (22) for x3 and use the expression
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and its derivative in the second equation to solve for x to obtain the input-output equation,ẍ+ ẋ [µI + µP + µC ] + x [µC(µI + µP )]− [µCµI ] = 0,

x(0) = 1, ẋ(0) = 0,
(23)

where the left-hand side is a monic polynomial in ẍ, ẋ, x and 1.

Screening. Screening observes, with screening sensitivity β, whether the system is in either the

preclinical indolent or the preclinical progressive state. Therefore, screening measures

w(t) := β P(Y2(t) + Y3(t) = 1|Y1(0) = 1, Yi(0) = 0,∀i > 1)

= β (1− P(Y2(t) + Y3(t) = 0|Y1(0) = 1, Yi(0) = 0, ∀i > 1)) .

We find that

P(Y2(t) + Y3(t) = 0|Y1(0) = 1, Yi(0) = 0,∀i > 1)

=
∑

(i1,k,l,i4)

P(Y1(t) = i1, Y2(t) = k, Y3(t) = l, Y4(t) = i4|Y1(0) = 1, Yi(0) = 0,∀i > 1)1i40k0l1i4

= E
(
1Y1(t)0Y2(t)0Y3(t)1Y4(t)|Y1(0) = 1, Yi(0) = 0,∀i > 1

)
= Φ1(1, 0, 0, 1; 0, t).

We define now z(s) = Φ1(1, 0, 0, 1; t − s, t) and accordingly zk(s) = Φk(1, 0, 0, 1; t − s, t), for

k = 1, 2, 3. It follows that w(t) = β (1 − z(t)). Substituting z(s) and zk(s) into the backward

Kolmogorov equation (20) we obtain
ż = −(µI + µP )z + µP z3, z(0) = 1,

ż3 = µc(1− z3), z3(0) = 0

w = β(1− z), w(0) = 0.

(24)

From here, we derive the input-output equation for w as a monic polynomial in the observable

variable w and its derivatives,ẅ + ẇ [µI + µP + µC ] + w [µC(µI + µP )]− [βµCµI ] = 0,

w(0) = 0, ẇ(0) = β(µI + µP ).
(25)

Conclusion. Under full observation of the trajectory of clinical incidence, {x(t) : t ≥ 0}, Theorem

0.1 asserts that the coefficients of the ODE are uniquely determined, and hence the uniquely
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identifiable parameter combinations are

µI + µP + µC , µC(µI + µP ), µCµI . (26)

Therefore, based on our assumption that µI + µP < µC , all three parameters occurring in (27)

are uniquely identifiable. In the case of a interval-censored observation, {x(t) : t ∈ [t1, t2]}, we

can exploit properties of second-order linear ODEs to show that measuring the interval-censored

trajectory still leads to uniquely identifiable parameters. It remains to identify β, which we can

do based on information from screening, see input-output equation (25). Because we have already

identified µI , µP , µC from clinical incidence information, inspection of the explicit solution to (25)

reveals that a single measurement of w(t1) at t1 > 0 is sufficient to determine β. In conclusion,

all four parameters are globally identifiable.

Remark 0.4. Regarding screening, see input-output equation (25), we note that based on the ob-

servation of the full trajectory including the initial condition, Theorem 0.1 states that the following

parameter combinations are globally identifiable:

µI + µP + µC , µC(µI + µP ), βµCµI , β(µI + µP ). (27)

It is straight-forward to verify that the mapping from (µI , µC , µP , β) to the above combinations is

one-to-one given that µI + µP < µC.

10



Web Table 1

Screening round No. of women Screen-detected cases Interval-detected cases
1 19711 142 15
2 17669 66 10
3 17347 43 9
4 17193 54 9
5 9876 28 5

Table S1: CNBSS-2 data. Grouped data from the Canadian Breast Cancer Screening Study-2 [Miller et
al., CMAJ, 1992]. “No. of women” is the number of women who attended all screening rounds up to and
including the current round.

1

CNBSS-2. Grouped data from the Canadian Breast Cancer Screening Study-2 [3]. ”No. of women” is the number
of women who attended all screening rounds up to and including the current round.

Web Table 2

Â ⁄̂ 95% CI ŵ 95% CI —̂ 95% CI ‰2 P-value
0.00 0.30 0.10-0.47 0.0031 0.0023-0.0036 0.81 0.44- NA 6.20 0.7984
0.05 0.30 0.09-0.48 0.0029 0.0023-0.0034 0.75 0.41-0.96 7.03 0.7226
0.10 0.28 0.09-0.48 0.0028 0.0023-0.0032 0.69 0.40-0.90 7.74 0.6546
0.20 0.26 0.11-0.48 0.0026 0.0022-0.0030 0.59 0.39-0.79 8.23 0.6061
0.40 0.34 0.16-0.62 0.0024 0.0022-0.0027 0.51 0.38-0.64 8.39 0.5905

Table S2: CNBSS-2: parameter estimation and goodness of fit for constrained mixture model.
The mixture model with fixed fraction of indolent cancers Â is fit to the CNBSS-2 data (see Table S1). Onset
of preclinical disease is assumed to be negligible before age �0 = 45 years.

4

CNBSS-2: Parameter estimation and goodness of fit for constrained mixture model. The mixture
model with fixed fraction of indolent cancers ψ is fit to the CNBSS-2 data (see Web Table 1). Onset of preclinical
disease is assumed to be negligible before age ∆0 = 45 years.

Web Table 3

�0 Â̂ 95% CI ⁄̂ 95% CI ŵ 95% CI —̂ 95% CI ‰2 P-value
35 0.30 NA-0.56 0.25 0.05- NA 0.0019 0.0016-0.0040 0.40 0.29- NA 12.10 0.2782
40 0.32 NA-0.64 0.26 0.06- NA 0.0021 0.0018-0.0039 0.44 0.32- NA 10.92 0.3634
45 0.00 NA-0.57 0.30 0.10-0.69 0.0031 0.0023-0.0036 0.81 0.42- NA 6.20 0.7984
50 0.00 NA-0.74 0.23 0.12- NA 0.0032 0.0029-0.0036 0.76 0.58-0.96 2.20 0.9946

Table S3: CNBSS-2: parameter estimation and goodness of fit for varying onset ages. The
mixture model is fit to the CNBSS-2 data (see Table S1) for varying ages of first possible onset of preclinical
disease.

5

CNBSS-2: Parameter estimation and goodness of fit for varying onset ages. The mixture model is fit
to the CNBSS-2 data (see Web Table 1) for varying ages of first possible onset of preclinical disease.
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Web Figure 1
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FIGURE S1: Sensitivity of bias to follow up. Absolute bias for all four model parameters assuming
50,000 women were screened annually at ages 50–54 years with follow-up to age 55 years (left column) and
age 60 years (right column). Screening test sensitivity was set to — = 80%.

2

Sensitivity of bias to follow up. Absolute bias for all four model parameters assuming 50,000 women were
screened annually at ages 50–54 years with follow-up to age 55 years (left column) and age 60 years (right column).
Screening test sensitivity was set to β = 80%.
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Web Figure 2

Follow − up to age 55 Follow − up to age 60
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FIGURE S1: Sensitivity of bias to follow up. Absolute bias for all four model parameters assuming
50,000 women were screened annually at ages 50–54 years with follow-up to age 55 years (left column) and
age 60 years (right column). Screening test sensitivity was set to — = 80%.

2

Sensitivity of the standard error to follow up. Standard errors for all four model parameters assuming 50,000
women were screened annually at ages 50–54 years with follow-up to age 55 years (left column) and age 60 years
(right column). Screening test sensitivity was set to β = 80%.
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